OpenSees Workshop

Online Tutoring Course

S. Mojtaba Hosseini G.,

PhD. Structural and Earthquake Engineering

Educational Background:

2004-2008 BSc, Civil Engineering, KNT University 2008-2010 MSc, Earthquake Engineering, Sharif University of Technology

2010-Present PhD, Structural and Earthquake Eng., Sharif University of Technology

Hadi Kenarangi,

PhD. Structural and Earthquake Engineering

Educational Background:

2003-2007 BSc, Civil Engineering, Tabriz University 2007-2009 MSc, Earthquake Engineering, Sharif University of Technology

2013 PhD, Structural and Earthquake Eng., SUNY at Buffalo

SUT OpenSees Group

Some of Past works (Since 2007):

- OpenSees Book: coming soon
- OpenSees Tutoring Courses in:
 - Sharif University of Technology, Tehran, Iran.
 - Khajeh Nasir University of Technology, Tehran, Iran.
 - Civil House Engineering Institute, Tehran, Iran.
 - Noshirvani University of Technology, Babol, Iran.
 - 9th International Congress on Civil Engineering, 2012 May 8-10, Isfahan University Of Technology, Isfahan, Iran.
- Development of Related Softwares:
 - SAP2000 to OpenSees Convertor (SOC2D), A code developed in MatLab which easily converts SAP2000 models into OpenSees.
 - SOC3D
- Academic and Professional Projects:
 - Modeling various structural models and simulations such as:
 - Bridges, Steel and RC Buildings, Spatial Structures, Passive and Active Control, Masonry Infill Walls, SMA, Wind Turbine, etc.

What is OpenSees?

- A software framework for simulation applications in earthquake engineering using finite element methods. OpenSees is not a code.
- As open-source software, it has the potential for a community code for earthquake engineering.
- OpenSees has been under development by PEER since before 1997.
- Large group of developers and user.
- NEESgrid and NEESit support integration and extension since 2003.
- Open-source and royalty free license for noncommercial use.

OpenSees Framework

OpenSees

- <u>ModelBuilder</u> Object is responsible for building the objects in the model and adding them to the domain.
- Recorder Object monitors user-specified objects of the model during the analysis.
- Analysis Object is responsible for performing the analysis.
- <u>Domain Object</u> is responsible for storing the objects created by the ModelBuilder object and for providing the Analysis and Recorder objects access to these objects.

Model-Building Objects

- model Command
- node Command
- mass Command
- Constraints Objects
- uniaxialMaterial Command
- nDMaterial Command
- section Command
- element Command
- block Command
- region Command
- Geometric Transformation Command
- Time Series
- pattern Command

Recorder Objects

- Node Recorder
- EnvelopeNode Recorder
- MaxNodeDisp Recorder
- Drift Recorder
- Element Recorder
- EnvelopeElement Recorder
- Display Recorder
- Plot Recorder
- Playback Command

Analysis Objects

- constraints Command
- numberer Command
- analysis Command
- algorithm Command
- integrator Command
- system Command
- test Command
- analyze Command
- rayleigh Command
- eigen Command
- dataBase Commands

OpenSees User Manual

A document providing the syntax and description of OpenSees commands in 3 formats:

- HTML Manual on-line HTML document, residing on OpenSees server. Always going to be the most current.
- MS Word downloadable and printable Word document in PDF format.
- Offline Windows downloadable .chm file. it is similar to the HTML format, but the file resides on your computer.

1. HTML On-line Format

2. MS Word Format - PDF

Open System for Earthquake Engineering Simulation (OpenSees)

OpenSees Command Language Manual

Silvia Mazzoni, Frank McKenna, Michael H. Scott, Gregory L. Fenves, et al.

Elastic Beam Column Element

This command is used to construct an elasticBeamColumn element object. The arguments for the construction of an elastic beam-column element depend on the dimension of the problem, *ndm* (page 29):

For a two-dimensional problem:

element elasticBeamColumn \$eleTag \$iNode \$jNode \$A \$E \$lz \$transfTag

For a three-dimensional problem:

\$eleTag

element elasticBeamColumn \$eleTag \$iNode \$jNode \$A \$E \$G \$J \$ly \$lz \$transfTag

unique element object tag

,		and a common object tag
\$iNode	\$jNode	end nodes
\$ A		cross-sectional area of element
\$E		Young's Modulus
\$G		Shear Modulus
\$J		torsional moment of inertia of cross section
\$Iz		second moment of area about the local z-axis
\$ly		second moment of area about the local y-axis
\$transfTa	ıg	identifier for previously-defined coordinate-transformation (page 280) (CrdTransf) object

The valid queries to an elastic beam-column element when creating an *ElementRecorder* (page 307) object are 'stiffness' and 'force.'

3 .chm file for MS Windows

4 .Quick Reference Guide-PDF

The OpenSees Quick Reference Guide Opensees Student Group, May 8, 2012 Seyed Mojtaba Hosseini Gelekolai and Hadi Kenarangi Sharif University of Technology, Tehran, Iran

1-Modeling Commands

```
model modelBuilderType <specific model builder args>
model BasicBuilder -ndm ndm? <-ndf ndf?>

node nodeTag? (ndm coordinates?) <-mass (ndf values?)>

mass nodeTag? (ndf values?)

uniaxialMaterial materialType <specific material args>
uniaxialMaterial Elastic matTag? E? <eta?>
uniaxialMaterial ElasticPP matTag? E? ep?
uniaxialMaterial ElasticPPGap matTag? E? fy? gap?
uniaxialMaterial Parallel matTag? tag1? tag2? ... <-min min?> <-max max?>
uniaxialMaterial Series matTag? tag1? tag2? ...
uniaxialMaterial Hardening matTag? E? sigmaY? H_iso? H_kin?
uniaxialMaterial Steel01 matTag? fy? E0? b? <a1? a2? a3? a4?> <-min min?> <-max max?>
uniaxialMaterial Concrete01 matTag? fpc? epsc0? fpcu? epscu? <-min min?> <-max max?>
uniaxialMaterial Hysteretic matTag? s1p? e1p? s2p? e2p? <s3p? e3p?> s1n? e1n? s2n? e2n?
<s3n? e3n?> pinchX? pinchY? damage1? damage2? <beta?>
```

5. OpenSees Examples Manual-chm

How to Download OpenSees

http://opensees.berkeley.edu

Your Email Address

Now Download

OpenSees: Open Source

Resources for Developers

Welcome! This page contains some useful information for you brave souls who wish to get involved in the code development of OpenSees.

Documentation

Before you begin and for when you get stuck there is always the documentation. For new users to OpenSees, have a look at the primers to get yourselves more familiar with the overall design. For you programmers who need to understand the inner workings of the classes have a look at the Class Specifications.

Browse the Source Code

Browse the up-to-the-minute latest version of the source code

Download

CVS

Those doing active development can check out the latest source using CVS. This is the preferred method, as it lets you get up-tothe-minute changes and merge them with your own. Details are on our CVS page.

Builds

Contribute

To contribute code, submit your

changes to following the
instructions. If the code change
are approved they'll be
committed

Current directory: [local] / OpenSees / SRC

File	Rev.	<u>Age</u>	<u>API</u>	Last log entry
Parent Directory				
Attic/ [Don't hide]				
actor/				
analysis/				
convergenceTest/				
coordTransformation/				
damage/				
atabase/				
<u>doc/</u>				
domain/				
element/				
araph/				
handler/				
iava/				
machine/				
material/				
matrix/				
modelbuilder/				
nDarray/				
optimization/				
package/				
recorder/				
reliability/				
remote/				

OpenSees Community Forum

Seven Forum Categories

	Forum	Topics	Posts	Last Post
OpenSees				
(OpenSees.exe Users Forum for OpenSees users to post questions, comments, etc. on the use of the OpenSees interpreter, OpenSees.exe Moderator silvia	1873	6750	Mon Aug 25, 2008 10:14 am <u>TWI</u> → D
<u>(2)</u>	Soil Modelling A forum dedicated to users with questions regarding soil materials and elements.	16	44	Mon Jul 21, 2008 7:41 pm <u>rjaeger</u> →D
<u>(2)</u>	Framework For developers writing C++, Fortran, Java, code who have questions or comments to make. Moderator silvia	233	829	Fri Aug 15, 2008 11:42 pm neallee → D
<u>(2)</u>	Parallel Processing This forum is for issues related to parallel processing and OpenSees using the new interpreters OpenSeesSP and OpenSeesMP	14	33	Wed Jul 23, 2008 10:11 pm hongqi →D
<u>(2)</u>	Useful Scripts. If you have a script you think might be useful to others post it here. Hopefully we will be able to get the most useful of these incorporated in the manuals. Moderator silvia	27	78	Tue Aug 12, 2008 12:15 am khili83 →D
<u>(2)</u>	Documentation For posts concerning the documentation, errors, ommissions, general comments, etc. Moderator silvia	127	352	Mon Aug 04, 2008 8:22 am pennycorp66 →D
<u>(a)</u>	Future Directions A forum dedicated to the future direction of OpenSees, i.e. what would you like, what do you need. Moderator silvia	29	104	Mon Aug 18, 2008 1:18 am <u>Andrew</u> →D

Very Busy Message Board

OpenSees.exe Users

Moderator: silvia

Users browsing this forum: silvia

Goto page 1, 2, 3 ... 36, 37, 38 Next

The OpenSees Community Forum Index -> OpenSees.exe Users

Mark all topics read

	Topics	Replies	Author	Views	Last Post
W.	Sticky: First Public Release of BuildingTcl	7	<u>silvia</u>	466	Fri Aug 22, 2008 5:51 am <u>hresquivelo</u> → D
W	Sticky: OpenSees Days 2008, 8-9 September. Registration open	4	silvia	433	Thu Aug 14, 2008 2:40 pm <u>silvia</u> → D
0	Is consecutive multiple analysis possible in OpenSees?	8	TWI	130	Mon Aug 25, 2008 10:14 am <u>TWI</u> →D
0	axial load in pushover analysis and IDA method	1	shenq0122	55	Mon Aug 25, 2008 9:46 am esi opensees →D
0	how to move the load pattern?	5	zhmkitten	60	Mon Aug 25, 2008 8:03 am <u>zhmkitten</u> → D
0	dynamic analysis of rocking frame	1	<u>ca493</u>	20	Mon Aug 25, 2008 6:35 am <u>silvia</u> → □
0	fracture modeling	7	<u>ca493</u>	160	Sun Aug 24, 2008 5:57 pm ca493 →D
0	Sorry	4	<u>jk295</u>	136	Sun Aug 24, 2008 10:29 am <u>silvia</u> → □
0	eigenvalue analysis error	2	mrathore	55	Fri Aug 22, 2008 4:08 pm <u>Prayag Sayani</u> → D
0	using scale factor	6	jk295	74	Fri Aug 22, 2008 12:48 pm <u>jk295</u> → D
0	Model of tallbuilding in opensees	1	dinochen1983	45	Fri Aug 22, 2008 10:42 am <u>silvia</u> →D
0	nonlinear static analysis	1	susan	28	Fri Aug 22, 2008 10:38 am <u>silvia</u> → D

Our OpenSees Facebook Group

OpenSees.exe

- OpenSees is an Open-Source Software Framework for developing Nonlinear Finite Element Applications for both sequential and parallel environments.
- OpenSees.exe is an extension of the Tcl interpreter for finite element analysis which uses this framework. It is an example of an application that can be developed using the framework.

What is Tcl

- •Tcl is a string-based scripting language.
- Variables and variable substitution
- Expression evaluation
- •Basic control structures (if, while, for, foreach)
- Procedures
- •File manipulation
- Sourcing other files

TCL Help

How to Install

- Install ActiveTcl8.4.6.1 and ActiveTcl8.5.11 on drive C:\
- Install Install_OSP.exe on drive C:\
- Copy tcleditor folder to C:\
- Go to C:\tcleditor\bin right click on TclEditor.exe select send shortcut to desktop
- Now you can easily use OpenSees by double clicking teleditor on your desktop

How to Install

SUT OpenSees Pack 1.00 Installation

Welcome to SUT OpenSees Pack Installer

Hello World! (My First Code)

GUIs are possible

1. BuildingTcl

BuildingTclViewer: Results - RC Frame

2. OpenSees Navigator

OpenSees Navigator

3. OpenSees Post Processor (OSP)

4. OpenSeesPL (Soil and Pile Modeling)

Finite Element Analysis Softwares

Micro modeling
 ABAQUS, ANSYS, DIANA
 NASTRAN, OPENSEES

Macro Modeling

ETABS, SAP2000, PERFORM, DRAIN, NONLIN-Pro, IDARC, OPENSEES

How to Compute Performance-Based Deformation Demands?

Increasing Value of Information

- X Linear Static Analysis
- ★ Linear Dynamic Modal Response Spectrum Analysis
- Linear Dynamic Modal Response History Analysis
- Linear Dynamic Explicit Response History Analysis
- Nonlinear Static "Pushover" Analysis Nonlinear Dynamic Explicit Response History Analysis

★ = Not Reliable in Predicting Damage

DRAIN-2Dx is old technology, but it represents the basic state of the practice. The state of the art is being advanced through initiatives such as PEER's OpenSees Environment.(Reference: FEMA technical report 15-5-a)

Why OpenSees

Advantages:

Very Fast=> Timesaver

Open-source => Adding Some Codes

Free License => Easy Paper Submission

Text File Output =>Little H.D.D. Space Consumption

Flexible Programming (TCL) => Easy Parametric Studies

Very Strong Analysis Engine => Easy Nonlinear Analysis

• Disadvantages:

No fully developed pre or post processors yet available for model development and visualization

Code is under development and still being fine-tuned

Bridge-Soil-Pile Modeling

And Why do Finite Element Analysis NCEER frame tested at the Taiwan facility

OpenSees
Test data

Buffalo Shaking Table Test

Experimental Testing

Analytical Simulation

Objective of User Workshop

- Describe modeling and analysis capability, including: element, section, material.
- Overview of applications, structural not geotechnical.
- Show specific examples of nonlinear analysis.
- Motivation to use OpenSees for your simulation problems....

What Should be Your Expectations?

- OpenSees is a research tool at this time, but fairly stable for regular use.
- As with any nonlinear analysis, it requires careful consideration of model and interpretation of results.
- It is under continual development by students, faculty and other researchers.
- It is not bullet-proof.
- An investment of time and learning is required.
- The OpenSees open-source community requires contributions for the community to succeed.

Any Questions or Statements?

Basic Modeling

What is Tcl

- Tel is a dynamic programming language.
- It is a string based command language.
- Variables and variable substitution
- Expression evaluation
- Basic control structures (if, while, for, foreach)
- Procedures
- File manipulation
- Sourcing other files.

Comand syntax:

command arg1 arg2 ...

- Help
- 1. http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

Tcl Scripting

• Variables and variable substitution

```
>set a 1
1
>set b a
a
>set b $a
1
>set b $a$1
1
```

• Expression Evaluation

```
>expr 2+3
5
>set b [expr 2+$a]
3
>set b [expr 2+$a.$a]
3.1
```

• Lists

```
>set a {9 i c c e}
9 i c c e
>set La [llength $a]
5
>set a_0 [lindex $a 0]
9
>lappend a OpenSees
9 i c c e OpenSees
```

• file manipulation

```
>set txt [open temp.out w+]
file1792158
>puts $txt "Hello World"
>close $txt
>type temp.out
Hello World
```

• procedures & control structures

```
> for {set i 1} {$i < 10} {incr
i 1 } {
puts "i equals $i"
>foreach i {9 i c c e} {
puts "i is $i"
>proc comp {a b} {
if \{ a < b \} 
puts "$a is lower than $b"
} else {
if \{\$a > \$b\}
puts "$a is greater than $b"
} else { puts "$a is equal $b"}
```

>source example.tcl

OpenSees.exe

There is no GUI!

```
C:\Users\Hadi\AppData\Local\Temp\openSees (3).exe
         OpenSees -- Open System For Earthquake Engineering Simulation Pacific Earthquake Engineering Research Center -- 2.0.0
               (c) Copyright 1999,2000 The Regents of the University of California
                                         All Rights Reserved
     (Copyright and Disclaimer @ http://www.berkeley.edu/OpenSees/copyright.html)
OpenSees >
```

Example 1-Eigen Value Problem

ModelBuilder Command

Basic ModelBuilder

model Basic -ndm \$ndm <-ndf \$ndf>

2D Model:

ndm = 2ndf = 2 or 3

3D Model:

ndm = 3ndf = 3 or 6

Example 1-Eigen Value Problem

wipe
model basic -ndm 2 -ndf 3

Domain

node \$nodeTag (ndm \$coords)

mass \$nodeTag (ndf \$MassValues)

Geometric Transformation
 Linear , PDelta , Corotational

geomTransf Linear \$transfTag

• Single-Point Constraints

fix \$nodeTag (ndf \$ConstrValues)

 Multi-Point Constraints equalDOF, rigidDiaphragm, rigidLink

Element in Global System

U
P
Geometric Transformation

V
q

Element in Basic System

Example 1-Eigen Value Problem

wipe

model basic -ndm 2 -ndf 3

node 1 0. 0.

node 2 3. 0.

node 3 0. 3.

node 4 3. 3.

fix 1 1 1 1

fix 2 1 1 1

mass 3 2000. 0. 0.

mass 4 2000. 0. 0.

geomTransf Linear 1

Materials

Uniaxial, nD Material, Section

Uniaxial

Elastic

ElasticPP

Hardening

Concrete

Steel

Hysteretic

PY-TZ-QZ

Parallel

Series

Gap

Fatigue

etc.

nD

Elastic

J2

DruckerPrager

TemplateElasto-Plasto

FluidSolidPorous

PressureMultiYield(depen

dent, independent)

etc.

Section

Elastic

Fiber

(over 250 material classes)

Materials

Uniaxial

uniaxialMaterial Elastic \$matTag \$E

uniaxialMaterial Concrete01 \$matTag \$fpc \$epsc0 \$fpcu \$epsU

uniaxialMaterial Steel01 \$matTag \$Fy \$E0 \$b

• Elements

Truss, Elastic Beam Column, Zero Length, Nonlinear Beam Column (force, displacement), Beam With Hinges, Quad, Shell, Brick, Joint, etc. > 100 element classes

element truss \$eleTag \$iNode \$jNode \$A \$matTag

element elasticBeamColumn \$eleTag \$iNode \$jNode \$A \$E \$Iz \$transfTag

element nonlinearBeamColumn \$eleTag \$iNode \$jNode \$numIntgrPts \$secTag \$transfTag

Example 1-Eigen Value Problem

wipe

model basic -ndm 2 -ndf 3

node 1 0. 0.

node 2 3. 0.

node 3 0. 3.

node 4 3. 3.

fix 1 1 1 1

fix 2 1 1 1

mass 3 2000. 0. 0.

mass 4 2000. 0. 0.

geomTransf Linear 1

element elasticBeamColumn 1 1 3 28.5e-4 2e11 1.943e-5 1 element elasticBeamColumn 2 2 4 28.5e-4 2e11 1.943e-5 1 element elasticBeamColumn 3 3 4 28.5e-4 2e11 1.943e-5 1

Eigen Command

eigen \$numEigenvalues

wipe

model basic -ndm 2 -ndf 3

node 1 0. 0.

node 2 3. 0.

node 3 0. 3.

node 4 3. 3.

fix 1 1 1 1

fix 2 1 1 1

mass 3 2000. 0. 0.

mass 4 2000. 0. 0.

geomTransf Linear 1

element elasticBeamColumn 1 1 3 28.5e-4 2e11 1.943e-5 1 element elasticBeamColumn 2 2 4 28.5e-4 2e11 1.943e-5 1 element elasticBeamColumn 3 3 4 28.5e-4 2e11 1.943e-5 1

puts "First Eigen Value is: [eigen 1]

First Mode Period is: [expr 2*3.1415/pow([eigen 1],0.5)]"

Example 2-1-Gravity Loading

$$I = 1.943e - 5 m^4$$

$$A = 2.85e - 3 m^2$$

$$E = 2.e11 \frac{N}{m^2}$$

Total Displacement of Node 4?

Load Pattern

Plain, Uniform Excitation, Multi Support

Uniform Plain Excitation Nodal Load Acceleration Elemental Load BeamPointLoad BeamUniformLoad BeamTempLoad SP_Constraint

• Time Series (Functions)
Constant, Linear, Rectangular, Sine, Path

- Series -dt dt? -values {list of points} <-factor cFactor?>
- Series -time {list of times} -values {list of points} <-factor cFactor?>
- Series -dt dt? -filePath fileName? <-factor cFactor?>
- Series -fileTime fileName1? -filePath fileName2? <-factor cFactor?>

Example 2-1-Gravity Loading

```
model basic -ndm 2 -ndf 3
node 1 0. 0.
node 2 3, 0,
node 3 0. 3.
node 4 3. 3.
fix 1 1 1 1
fix 2 1 1 1
mass 3 2000, 0, 0.
mass 4 2000, 0, 0.
geomTransf Linear 1
element elasticBeamColumn 1 1 3 28.5e-4 2e11 1.943e-5 1
element elasticBeamColumn 2 2 4 28.5e-4 2e11 1.943e-5 1
element elasticBeamColumn 3 3 4 28.5e-4 2e11 1.943e-5 1
pattern Plain 1 Linear {
eleLoad -ele 3 -type -beamUniform -5e4
load 3 3.e5 0. 0.
```

wipe

Output Options

There is NO OUTPUT until you request it from

OpenSees!

There are 4 options to obtain output:

1. recorder command

Records a specific output to a file or database recorder \$type \$arg1 \$arg2 ...

2. puts command

Puts a specific output or variable to monitor or file stream puts <\$fileID> \$string

3. print command

Prints a specific output or data existed in the domain to monitor or file stream print <-file \$fileName> <-node \$nd1 \$nd2 ..> <-ele \$ele1 \$ele2 ...>

4. recorder display command

Output Options

Node/EnvelopeNode Recorders

•The EnvelopeNode takes exactly same args as Node

Output Options

Element/EnvelopeElement Recorders

recorder Element <-file \$fileName> <-time> <-ele \$tg1 \$tg2 ...> \$arg1 \$arg2 ...

The valid args for different elements

Elastic BCE: Force BCE and BWHE:

force force

globalForce

localForce

plasticDeformation

etc.

•The EnvelopeElement takes exactly same args

Example 2-1-Gravity Loading

```
wipe
model basic -ndm 2 -ndf 3
node 1 0. 0.
node 2 3, 0,
node 3 0. 3.
node 4 3. 3.
fix 1 1 1 1
fix 2 1 1 1
mass 3 2000, 0, 0.
mass 4 2000, 0, 0.
geomTransf Linear 1
element elasticBeamColumn 1 1 3 28.5e-4 2e11 1.943e-5 1
element elasticBeamColumn 2 2 4 28.5e-4 2e11 1.943e-5 1
element elasticBeamColumn 3 3 4 28.5e-4 2e11 1.943e-5 1
pattern Plain 1 Linear {
eleLoad -ele 3 -type -beamUniform -5e4
load 3 3.e5 0. 0.
```

```
300KN 3 4 2
```

```
recorder Node -file node4disp.out -time -node 4 -dof 1 2 3 disp
recorder Node -file node1reac.out -time -node 1 -dof 1 2 3 reaction
recorder Node -file node2reac.out -time -node 2 -dof 1 2 3 reaction
```

Example Analysis

Static Linear Analysis with Load Control

constraints Plain
numberer Plain
system BandGeneral
test NormDispIncr 1.e-8 6
algorithm ModifiedNewton
integrator LoadControl 1
analysis Static
analyze 1
loadConst -time 0.0

Static Nonlinear Analysis with Load Control

constraints Plain numberer Plain system BandGeneral test NormDispIncr 1.e-8 6 algorithm ModifiedNewton integrator LoadControl 0.1 analysis Static analyze 10 loadConst -time 0.0

Example 2-1-Gravity Loading

```
wipe
model basic -ndm 2 -ndf 3
node 1 0. 0.
node 2 3, 0,
node 3 0. 3.
node 4 3. 3.
fix 1 1 1 1
fix 2 1 1 1
mass 3 2000, 0, 0,
mass 4 2000, 0, 0.
geomTransf Linear 1
element elasticBeamColumn 1 1 3 28.5e-4 2e11 1.943e-5 1
element elasticBeamColumn 2 2 4 28.5e-4 2e11 1.943e-5 1
element elasticBeamColumn 3 3 4 28.5e-4 2e11 1.943e-5 1
pattern Plain 1 Linear {
eleLoad -ele 3 -type -beamUniform -5e4
load 3 3.e5 0. 0.
```


recorder Node -file node4disp.out -time -node 4 -dof 1 2 3 disp recorder Node -file node1reac.out -time -node 1 -dof 1 2 3 reaction recorder Node -file node2reac.out -time -node 2 -dof 1 2 3 reaction

constraints Plain numberer Plain system BandGeneral test NormDispIncr 1.e-8 6 algorithm ModifiedNewton integrator LoadControl 1 analysis Static analyze 1 loadConst -time 0.0

Example 2-2-Linear Pushover

Push the frame to 0.1m displacement of Node 4 in X dir.

Example Analysis

Static Linear Analysis with Displacement Control

constraints Plain
numberer Plain
system BandGeneral
test NormDispIncr 1.e-8 6
algorithm ModifiedNewton
integrator DisplacementControl 4 1 0.001
analysis Static
analyze 100
loadConst -time 0.0

Example 2-2-Linear Pushover

```
wipe
model basic -ndm 2 -ndf 3
node 1 0. 0.
node 2 3, 0,
node 3 0. 3.
node 4 3. 3.
fix 1 1 1 1
fix 2 1 1 1
mass 3 2000, 0, 0,
mass 4 2000, 0, 0.
geomTransf Linear 1
element elasticBeamColumn 1 1 3 28.5e-4 2e11 1.943e-5 1
element elasticBeamColumn 2 2 4 28.5e-4 2e11 1.943e-5 1
element elasticBeamColumn 3 3 4 28.5e-4 2e11 1.943e-5 1
pattern Plain 1 Linear {
load 3 1000, 0, 0.
```


recorder Node -file node4disp.out -time -node 4 -dof 1 2 3 disp recorder Node -file node1reac.out -time -node 1 -dof 1 2 3 reaction recorder Node -file node2reac.out -time -node 2 -dof 1 2 3 reaction

constraints Plain
numberer Plain
system BandGeneral
test NormDispIncr 1.e-8 6
algorithm ModifiedNewton
integrator DisplacementControl 4 1 0.001
analysis Static
analyze 100
loadConst -time 0.0

Any Questions or Statements?

Nonlinear Modeling and Analysis

Why Nonlinear Analysis:

- Geometric Nonlinearities
- Material nonlinearities
- Contact nonlinearities

Nonlinear Analysis is Harder

- It requires much more thought when setting up the model
- It requires more thought when setting up the analysis
- It takes more computational time.
- It does not always converge.
- It does not always converge to the correct solution.

BUT Most Problems Require Nonlinear Analysis

CHECK YOUR MODEL!

Section Command

What is a section?

A section defines the stress resultant force-deformation response at a cross section of a beam-column or plate element.

Types of sections:

- Elastic
- Resultant
- Fiber

Fiber Section

The Fiber Section object is composed of Fiber objects.

```
section Fiber $secTag {
    fiber <fiber arguments>
    patch <patch arguments>
    layer <layer arguments>
}
```


Fiber command

fiber \$yLoc \$zLoc \$A \$matTag

Patch command

patch quad \$matTag \$numSubdivIJ \$numSubdivJK \$yI \$zI \$yJ \$zJ \$yK \$zK \$yL \$zL

patch circ \$matTag \$numSubdivCirc \$numSubdivRad \$yCenter
\$zCenter \$intRad \$extRad <\$startAng \$endAng>

Layer command

layer straight \$matTag \$numBars \$areaBar \$yStart \$zStart \$yEnd \$zEnd

layer circ \$matTag \$numBar \$areaBar \$yCenter \$zCenter
\$radius <\\$startAng \\$endAng>

Fiber Section Example

Push the frame to 0.1m displacement of Node 4 in X dir.

wipe

model basic -ndm 2 -ndf 3

node 1 0. 0.

node 2 3. 0.

node 3 0. 3.

node 4 3. 3.

fix 1 1 1 1

fix 2 1 1 1

mass 3 2000. 0. 0.

mass 4 2000. 0. 0.

geomTransf Linear 1

uniaxialMaterial Steel01 1 2.354e8 2.e11 0.02


```
wipe

model basic -ndm 2 -ndf 3

node 1 0. 0.
node 2 3. 0.
node 3 0. 3.
node 4 3. 3.

fix 1 1 1 1
fix 2 1 1 1

mass 3 2000. 0. 0.
mass 4 2000. 0. 0.
geomTransf Linear 1

uniaxialMaterial Steel01 1 2.354e8 2.e11 0.02
```

```
bf = 10cm
d = 20cm
tf = 0.85cm
tw = 0.56cm
```

```
section fiber 1 {
          patch quad 1 2 3 0.0915 0.05 0.0915 -0.05
                                                        0.1
                                                               -0.05
                                                                        0.1
                                                                                0.05
                                       -0.0915 -0.0028
          patch quad 1 2 8 -0.0915 0.0028
                                                        0.0915 -0.0028 0.0915
                                                                                0.0028
          patch quad 123
                           -0.1
                                0.05
                                        -0.1 -0.05
                                                        -0.0915 -0.05
                                                                        -0.0915
                                                                                0.05
```

```
wipe
                                                              element nonlinearBeamColumn 1 1 3 10 1 1
                                                              element nonlinearBeamColumn 2 2 4 10 1 1
model basic -ndm 2 -ndf 3
                                                              element nonlinearBeamColumn 3 3 4 10 1 1
node 1 0. 0.
node 2 3, 0,
node 3 0. 3.
                                                              pattern Plain 1 Linear {
node 4 3, 3,
                                                              load 3 10, 0, 0,
fix 1 1 1 1
fix 2 1 1 1
                                                              recorder Node -file node4disp.out -time -node 4 -dof 1 2 3 disp
                                                              recorder Node -file node1reac.out -time -node 1 -dof 1 2 3 reaction
mass 3 2000, 0, 0,
                                                              recorder Node -file node2reac.out -time -node 2 -dof 1 2 3 reaction
mass 4 2000, 0, 0,
geomTransf Linear 1
uniaxialMaterial Steel01 1 2.354e8 2.e11 0.02
section fiber 1 {
              patch quad 1 2 3 0.0915 0.05 0.0915 -0.05 0.1 -0.05 0.1 0.05
              patch quad 1 2 8 -0.0915 0.0028 -0.0915 -0.0028 0.0915 -0.0028 0.0915 0.0028
              patch quad 1 2 3 -0.1 0.05 -0.1 -0.05 -0.0915 -0.05 -0.0915 0.05
```

Example 3 (Analysis)

Static Nonlinear Analysis with Displacement Control

constraints Plain
numberer Plain
system BandGeneral
test NormDispIncr 1.e-8 6
algorithm ModifiedNewton
integrator DisplacementControl 4 1 0.001
analysis Static
analyze 100
loadConst -time 0.0

Example 4-1-NonLinear Earthquake-Without Damping

Example 4-1-NonLinear Earthquake-Without Damping

Uniform Excitation Pattern command

pattern UniformExcitation \$patternTag \$dir -accel (TimeSeriesType arguments) <-vel0 \$ver0>

set accel "Series -dt 0.02 -filePath TabasLN(dt=0.02)PGA=0.4g.txt -factor [expr 9.81]" pattern UniformExcitation 3 1 -accel \$accel

Time History Nonlinear Analysis

set dt 0.02

constraints Plain numberer Plain system BandGeneral test NormDispIncr 1.0e-8 10 algorithm Newton integrator Newmark 0.5 0.25 analysis Transient analyze [expr int(32.82/\$dt)] \$dt

Example 4-2-NonLinear Earthquake-With Damping

Example 4-2-NonLinear Earthquake-With Damping

rayleigh command

rayleigh \$alphaM \$betaK \$betaKinit \$betaKcomm

$$\alpha = \frac{2\xi\omega_i\omega_j}{\omega_i + \omega_j}$$

$$\beta = \frac{2\xi}{\omega_i + \omega_i}$$

rayleigh 1.19 0 0 0.0021

Example 4-4-NonLinear Earthquake-With Tuned Mass Damper

Example 4-4-NonLinear Earthquake-With Tuned Mass Damper

How to model a simple Tuned Mass Damper:

 $M_{tmd} = 80 \text{ Kg}$ $K_{tmd} = 45609.9 \frac{N}{m}$ $C_{tmd} = 0$

node 5 3. 3.

fix 5 0 1 1

mass 5 80.0.0.

uniaxialMaterial Elastic 2 45609.9 element zeroLength 4 4 5 -mat 2 -dir 1

Example 4-4-NonLinear Earthquake-With Tuned Mass Damper

Dotted Line: Uncontrolled

Bold Line: Controlled with TMD

Any Questions or Statements?

Earthquake Doesn't Kill People, Buildings Do!

Thank You.

Nov. 2012