SeismoBuild

Verification Report (ASCE 41-17) For version 2018

Copyright

Copyright © 2002-2018 Seismosoft Ltd. All rights reserved.

SeismoBuild[®] is a registered trademark of Seismosoft Ltd. Copyright law protects the software and all associated documentation.

No part of this report may be reproduced or distributed in any form or by any means, without the prior explicit written authorization from Seismosoft Ltd.:

Seismosoft Ltd. Piazza Castello 19 27100 Pavia (PV) - Italy e-mail: info@seismosoft.com website: www.seismosoft.com

Every effort has been made to ensure that the information contained in this report is accurate. Seismosoft is not responsible for printing or clerical errors.

Mention of third-party products is for informational purposes only and constitutes neither an engagement nor a recommendation.

Table of Contents

Chapter 1 INTRODUCTION	7
Presentation of the analysis program	7
Structure of the report	7
Program features covered by the program	7
Chapter 2 Capacity Models for Assessment and Checks according to American Society of C	VII
Engineers (ASCE 41-17)	9
Capacity Models for Assessment and Checks	9
Deformation Capacity	9
Shear Capacity	
Joints Shear Force	11
Chapter 3 COMPARISON WITH INDEPENDENT HAND-CALCULATIONS – MEMBER CHECKS	12
FXAMPLES SET 1. Rectangular Column Section	12
FXAMPI F 1 1	12
EXAMPLE 1.2	12
ΕΧΑΜΡΙΕ 1.2	16
FXAMPI F 1 4	18
FYΔMDI F 1 5	20
ΕΧΑΜΠ ΕΕ 1.5	20
EXAMILE 1.0	22 21
ΕΧΛΜΠ DE 1.7	27 25
ΕΧΑΜΠ ΕΕ 1.0	23
ΕΧΑΜΠ ΔΕ 1.9 FYΔMDI F 1 10	27 29
ΕΧΑΜΡΙ ΕΕ 1.10	27 31
ΕΧΛΜΠ DE 1.11	
ΕΧΛΜΠ DE 1.12	
ΕΧΙΜΙ DE 1.19	
ΕΧΙΜΠ DE 1.1 Γ	20
ΕΧΛΜΠ ΕΕ 1.15	
EXAMPLES SET 2.1. Shaped Column Section	
FXAMPI F 2 1	
FYΔMDI F 2.2	
ΕΧΛΜΠ 66 2.2 FYΔMDI F 2 3	
ΕΧΑΜΤ ΕΕ 2.5	
EXAMILE 2.4	
EXAMILE 2.5	
EXAMILE 2.0	
EXAMILE 2.7	
EXAMILE 2.0	
EXAMPLE 2.9	
EXAMPLE 2.10	01 62
EXAMPLE 2.11	
EXAMPLE 2.12	
EXAMPLE 2.15	
ылпыты ба 2.14 Бүлмді ғ 2.15	
еллы с. 2.13	/ 1 70
EAAMIFLE 2.10	
EAMPIF LES SET 5: 1-SHAPEU COLUIIII SECUOII	
еллыі III J.2	
EARIME LE 3.3	

EXAMPLE 3.4	
EXAMPLE 3.5	
EXAMPLE 3.6	
EXAMPLE 3.7	
EXAMPLE 3.8	
EXAMPLE 3.9	
EXAMPLE 3.10	
EXAMPLE 3.11	95
EXAMPLE 3 12	97
EXAMPLE 3 13	99
FXAMPIF 3 14	101
ΕΛΙΜΙ DE 3.1 Γ.	101
EXAMPLE 5.15	105
EXAMPLE 5.10	105
EXAMPLES SET 4. CITCUIAI COTUIIII SECUOII	
EAAMIT LE 4.1	107
EXAMPLE 4.2	
EXAMPLE 4.3	
EXAMPLE 4.4	
EXAMPLE 4.5	
EXAMPLE 4.6	
EXAMPLE 4.7	
EXAMPLE 4.8	
EXAMPLE 4.9	
EXAMPLE 4.10	125
EXAMPLE 4.11	
EXAMPLE 4.12	
EXAMPLE 4.13	
EXAMPLE 4.14	
EXAMPLE 4.15	
EXAMPLE 4.16	
EXAMPLES SET 5: Wall Section	
EXAMPLE 5.1	
EXAMPLE 5.2	
EXAMPLE 5.3	
EXAMPLE 5.4	
EXAMPLE 5.5	
EXAMPLE 5.6	
EXAMPLE 5.7	151
EXAMPLE 5.8	153
EXAMPLE 5.9	155
FXAMPLE 5.10	157
ΕΧΛΙΜΙ ΕΕ 5.10	
EXAMILE 5.11	
EAAMFLE 5.12	
EXAMPLE 5.14	
EXAMPLES SET 6: Beam Section	
EXAMPLE 6.1	
EXAMPLE 0.2	
EXAMPLE 0.3	
EXAMPLE 6.4	
EXAMPLE 6.5	
EXAMPLE 6.6	
EXAMPLE 6.7	179
EXAMPLE 6.8	
EXAMPLE 6.9	
EXAMPLE 6.10	

EXAMPLE 6.11	
EXAMPLE 6.12	
EXAMPLE 6.13	191
EXAMPLE 6.14	193
EXAMPLES SET 7: Jacketed Rectangular Column Section	
EXAMPLE 7.1	
EXAMPLE 7.2	
EXAMPLE 7.3	
EXAMPLE 7.4	
EXAMPLE 7.5	
EXAMPLE 7.6	206
EXAMPLE 7 7	208
EXAMPLE 7.8	210
FXAMPI F 7 9	210
ΕΧΛΜΤΙ ΕΕ 7.2	212
FYAMDI F 7 11	
EXAMI EE 7.11	
EXAMILE 7.12	
EXAMILE 7.13	
EXAMPLE 7.14	
EXAMPLE 7.15	
EXAMPLE 7.16	
EXAMPLES SET 8: Jacketed L-Shaped Column Section	
EXAMPLE 8.1	
EXAMPLE 8.2	
EXAMPLE 8.3	
EXAMPLE 8.4	
EXAMPLE 8.5	
EXAMPLE 8.6	
EXAMPLE 8.7	
EXAMPLE 8.8	
EXAMPLE 8.9	
EXAMPLE 8.10	
EXAMPLE 8.11	
EXAMPLE 8.12	
EXAMPLE 8.13	
EXAMPLE 8.14	
EXAMPLE 8.15	
EXAMPLE 8.16	
EXAMPLES SET 9: Jacketed T-Shaped Column Section	
EXAMPLE 9.1	
EXAMPLE 9.2	
EXAMPLE 9.3	267
EXAMPLE 9.4	269
EXAMPLE 9 5	272
EXAMPLE 9.6	274
FXAMPI F 9 7	277
FYAMDI F Q 8	
EXAMI EE 9.0	
БАЛИТ БЕ 9.9 FYAMDI F 0 10	201 202 202
БАЛИТ ББ 9.10 FYAMDI F 0 11	
БАЛИГЬВ 7.11 ЕХАМЛЕЕ 0.12	
ЕЛАМТЬС У.12 Ехамрі е о 12	
ЕЛАМР ЦЕ 9.13	
EXAMPLE 9.14	
EXAMPLE 9.15	
EXAMPLE 9.16.	
EXAMPLES SET 10: Jacketed Circular Column Section	

EXAMPLE 10.1	
EXAMPLE 10.2	
EXAMPLE 10.3	
EXAMPLE 10.4	
EXAMPLE 10.5	
EXAMPLE 10.6	
EXAMPLE 10.7	
EXAMPLE 10.8	
EXAMPLE 10.9	
EXAMPLE 10.10	
EXAMPLE 10.11	
EXAMPLE 10.12	
EXAMPLE 10.13	
EXAMPLE 10.14	
EXAMPLE 10.15	
EXAMPLE 10.16	
EXAMPLES SET 11: Jacketed Beam Section	
EXAMPLE 11.1	
EXAMPLE 11.2	
EXAMPLE 11.3	
EXAMPLE 11.4	
EXAMPLE 11.5	
EXAMPLE 11.6	
EXAMPLE 11.7	
EXAMPLE 11.8	
EXAMPLE 11.9	
EXAMPLE 11.10	
EXAMPLE 11.11	
EXAMPLE 11.12	
EXAMPLE 11.13	
EXAMPLE 11.14	

Chapter 4 COMPARISON WITH INDEPENDENT HAND-CALCULATIONS – BEAM-COLUMN JOINTS

CHECKS	261
CILCKS	
EXAMPLE 1	
EXAMPLE 2	
EXAMPLE 3	
EXAMPLE 4	
EXAMPLE 5	
EXAMPLE 6	
EXAMPLE 7	
EXAMPLE 8	
EXAMPLE 9	
EXAMPLE 10	

Chapter 1 INTRODUCTION

PRESENTATION OF THE ANALYSIS PROGRAM

SeismoBuild is an innovative Finite Elements package wholly and exclusively dedicated to seismic assessment and strengthening of reinforced concrete framed structures. The program is capable of fully carrying out the Code defined assessment methodologies from the structural modelling, through to the required analyses, and the corresponding member checks. Currently six Codes are supported (Eurocodes, the American Code for Seismic Evaluation and retrofit of Existing Buildings, ASCE 41-17, Italian National Seismic Codes NTC-08 and NTC-18, Greek Seismic Interventions Code KANEPE and the Turkish Seismic Evaluation Building Code TBDY). Both metric and imperial units, as well as European and US reinforcing rebar types are supported.

The rational and intuitive structure, as well as the simplicity of the package, which stem from the fact that it is the only software worldwide that is totally committed to seismic assessment, result in a very smooth learning curve, even for engineers that are not familiar with the Finite Elements method. The user-friendly, CAD-based, graphical interface increases the productivity significantly, to the point that the assessment of a multi-storey RC building may be completed within a few minutes, including the creation of the report and the CAD drawings to be submitted to the client.

The nonlinear analysis solver of SeismoBuild, which features both *geometric nonlinearities* and *material inelasticity,* is based on the advanced solution algorithms of SeismoStruct, a package that has been extensively used and verified by thousands of users for more than ten years. The accuracy of the solver in nonlinear analysis of framed structures is well demonstrated by the successes in many Blind Test Prediction Exercises.

The SeismoBuild results presented in this document were obtained using **version 2018** of the program, running on an AMD Phenom II X4 965 @ 3.40GHz machine with Windows 10 64-bit. All model files are included in SeismoStruct's installation folder.

STRUCTURE OF THE REPORT

The present report consists of a comprehensive collection of examples, which have been selected to test the various features that affect the member's capacity. It is structured in two main sections, which are briefly described below:

- In the first section (Chapter 2), the main relationships used for the Chord Rotation, Shear capacity and Beam-Column Joint checks used in ASCE 41-17 are summarized.
- In the second section (Chapter 3), the results for chord rotation and shear capacity produced by SeismoBuild are compared with the independent hand-calculations. The results are provided in tabular form;
- In the third section (Chapter 4), the results from checks for Beam-Column Joints capacity according to the ASCE 41-17 produced by SeismoBuild are compared with independent hand calculations. The results are provided in tabular form;

PROGRAM FEATURES COVERED BY THE PROGRAM

The aim of this section is to illustrate, through the table provided below, which program features (i.e. Codes, equations, member's advanced properties) are addressed in each example of the present report.

No. of Example	CODE	Section Type	File name	Element Type	Material Type	Equations	FRP	Adequate lap length	Inadequa te relative lap length	Absolute lap length	Without detailing for earthquake resistance	Smooth (Plain) Longitudi nal Bars	Knowledge Level	Comments
Example No. 1.1 Example No. 1.2			ASCE_rcrs1.bpf ASCE_rcrs2.bpf	Primary Primary	Existing Existing		d.	1	~			~	Usual Custom	
Example No. 1.3 Example No. 1.4			ASCE_rcrs3.bpf ASCE_rcrs4.bpf	Primary Secondary	Existing		1	77			~	~	Custom	custom material
Example No. 1.5 Example No. 1.6 Example No. 1.7			ASCE_rcrs6.bpf ASCE_rcrs7.bpf	Secondary Secondary	New Existing		V		4		*	•	Usual	additional bars
Example No. 1.8 Example No. 1.9	ASCE 41-13	RECTANGULAR	ASCE_rcrs8.bpf ASCE_rcrs9.bpf	Primary	Existing New		1		al.	1	~	~	Custom Usual	custom FRP custom material
Example No. 1.10 Example No. 1.11 Example No. 1.12			ASCE_rcrs10.bpf ASCE_rcrs11.bpf ASCE_rcrs12.bpf	Secondary Primary	Existing		~	~	ý.		Ž	1	Usual Custom	additional bars custom material
Example No. 1.13 Example No. 1.14			ASCE_rcrs13.bpf ASCE_rcrs14.bpf	Secondary Primary	Existing		~	4		~	77	~	Usual	
Example No. 1.15 Example No. 1.16 Example No. 2.1			ASCE_rcrs15.bpf ASCE_rcrs16.bpf ASCE_rclcs1.bpf	Primary Primary Primary	Existing Existing			777				_	Usual Usual	
Example No. 2.2 Example No. 2.3			ASCE_rclcs2.bpf ASCE_rclcs3.bpf	Primary Primary	Existing		4	4	~			4	Custom Usual	custom material
Example No. 2.4 Example No. 2.5	-		ASCE_rclcs4.bpf ASCE_rclcs5.bpf	Secondary Secondary	New		~	~	2	~	~	~	Usual	additional bars
Example No. 2.7 Example No. 2.8	ASCE 41-13	1.Shaped	ASCE_rclcs7.bpf ASCE_rclcs8.bpf	Secondary Secondary	Existing		~		Ż	~	3		Usual Custom	Masymetric
Example No. 2.9 Example No. 2.10	ASCE 41-13	L'snapeo	ASCE_rclcs9.bpf ASCE_rclcs10.bpf	Primary Primary	New				N	~	Ń	4	Usual Custom	custom material
Example No. 2.11 Example No. 2.12 Example No. 2.13			ASCE_rclcs11.bpf ASCE_rclcs12.bpf ASCE_rclcs13.bpf	Primary Secondary	New		~	*	×		v v	17	Custom	custom material
Example No. 2.14 Example No. 2.15			ASCE_rclcs14.bpf ASCE_rclcs15.bpf	Primary Secondary	Existing Existing		~	4		~	77	4	Usual Usual	
Example No. 2.16 Example No. 3.1 Example No. 3.2			ASCE_rctcs16.bpf ASCE_rctcs1.bpf ASCE_rctcs2.bpf	Primary Primary	Existing		~	77	~		×	~	Usual	
Example No. 3.3 Example No. 3.4			ASCE_rctcs3.bpf ASCE_rctcs4.bpf	Primary Secondary	Existing		17	17			~	Â.	Usual Custom	custom material
Example No. 3.5 Example No. 3.6			ASCE_rctcs5.bpf ASCE_rctcs6.bpf	Secondary Secondary	New		~		×	~	×	~	Usual	additional bars Assymetric
Example No. 3.7 Example No. 3.8 Example No. 3.9	ASCE 41-13	T-Shaped	ASCE_rctcs9.bpf ASCE_rctcs9.bpf	Secondary Primary	Existing		~			22	Ž	~	Custom Usual	custom FRP custom material
Example No. 3.10 Example No. 3.11			ASCE_rctcs10.bpf ASCE_rctcs11.bpf	Primary Secondary	New		~		77		7	4	Usual	additional bars
Example No. 3.12 Example No. 3.13 Example No. 3.14			ASCE_rctcs12.bpf ASCE_rctcs13.bpf ASCE_rctcs14.bpf	Primary Secondary Primary	Existing		V	7		~	ž	44	Custom	custom material
Example No. 2.15 Example No. 2.16			ASCE_rctcs15.bpf ASCE_rctcs16.bpf	Secondary Secondary	Existing Existing			1			7	4	Usual	
Example No. 4.1 Example No. 4.2			ASCE_rccs1.bpf ASCE_rccs2.bpf	Primary Primary Brimary	Existing		Z	4	~			3	Custom	custom material
Example No. 4.4 Example No. 4.5			ASCE_rccs4.bpf ASCE_rccs5.bpf	Secondary	New		ž	, i		~	~	4	Custom Usual	additional bars
Example No. 4.6 Example No. 4.7			ASCE_rccs6.bpf ASCE_rccs7.bpf	Secondary Secondary	New Existing		~		47		77		Usual Custom	
Example No. 4.8 Example No. 4.9 Example No. 4.10	ASCE 41-13	Circular	ASCE_rccs8.bpf ASCE_rccs9.bpf	Primary Primary	New		V		~	3	~	~	Usual	custom FRP custom material
Example No. 4.11 Example No. 4.12			ASCE_rccs11.bpf ASCE_rccs12.bpf	Secondary Primary	New		~	~	4		Ŷ	17	Usual	additional bars custom material
Example No. 4.13 Example No. 4.14			ASCE_rccs13.bpf ASCE_rccs14.bpf	Secondary Primary	Existing		~	~		~	4	4	Custom	
Example No. 2.15 Example No. 2.16 Example No. 5.1			ASCE_rccs15.bpf ASCE_rccs16.bpf ASCE_rcrws1.bpf	Primary Primary Primary	New			1				1	Usual	
Example No. 5.2 Example No. 5.3			ASCE_rcrws2.bpf ASCE_rcrws3.bpf	Primary Primary	Existing		4	4	~			4	Custom Usual	custom material
Example No. 5.4 Example No. 5.5			ASCE_rcrws4.bpf ASCE_rcrws5.bpf	Secondary Secondary	New		2	V	~	~	N N	~	Usual	additional bars
Example No. 5.7 Example No. 5.8	ASCE 41-13	wall	ASCE_rcrws7.bpf ASCE_rcrws8.bpf	Secondary Secondary	Existing		J.		Ż	~	77		Usual Custom	
Example No. 5.9 Example No. 5.10			ASCE_rcrws9.bpf ASCE_rcrws10.bpf	Primary Primary	New				×	~	N	V	Custom	custom material custom FRP
Example No. 5.11 Example No. 5.12 Example No. 5.13			ASCE_rcrws12.bpf ASCE_rcrws12.bpf ASCE_rcrws13.bpf	Primary Secondary	New		~	1	×		~	11	Usual Custom	custom material
Example No. 5.14 Example No. 6.1	-		ASCE_rcrws14.bpf ASCE_Beam1.bpf	Primary Primary	Existing		~	7		×	~		Usual Usual	
Example No. 6.2 Example No. 6.3			ASCE_Beam2.bpf ASCE_Beam3.bpf	Primary Primary Secondary	Existing			4	~		~	44	Usual	custom material
Example No. 6.5 Example No. 6.6			ASCE_Beam5.bpf ASCE_Beam6.bpf	Secondary Secondary	New				~	~	~	~	Usual Usual	additional bars Inclined
Example No. 6.7 Example No. 6.8	ASCE 41-13	BEAM	ASCE_Beam7.bpf ASCE_Beam8.bpf	Secondary Secondary	Existing				~	×.	4		Custom	
Example No. 6.10 Example No. 6.11			ASCE_Beam10.bpf ASCE_Beam11.bpf	Primary Secondary	New				17	*	3	~	Custom	additional bars
Example No. 6.12 Example No. 6.13			ASCE_Beam12.bpf ASCE_Beam13.bpf	Primary Secondary	New Existing			4			×,	43	Usual Custom	custom material
Example No. 6.14 Example No. 7.1 Example No. 7.2			ASCE_rcjrs1.bpf ASCE_rcjrs2.bpf	Primary Primary Primary	Existing+New Existing+New		V	~	V	~	~	~	Usual	
Example No. 7.3 Example No. 7.4			ASCE_rcjrs3.bpf ASCE_rcjrs4.bpf	Primary Secondary	Existing+New New+New		44	4			~	~	Usual Custom	custom material
Example No. 7.5 Example No. 7.6 Example No. 7.7			ASCE_rcjrs5.bpf ASCE_rcjrs6.bpf ASCE_rcjrs7.bpf	Secondary Secondary	New+New Existing+New		~		7	×	7	v	Usual	Assymetric
Example No. 7.8 Example No. 7.9	ASCE 41-13	JACKETED RECTANGULAR	ASCE_rcjrs8.bpf ASCE_rcjrs9.bpf	Secondary Primary	Existing+New New+New		~			77	~	~	Custom Usual	custom material
Example No. 7.10 Example No. 7.11			ASCE_rcjrs10.bpf ASCE_rcjrs11.bpf	Secondary	New+New New+New		~	N	1		~	1	Usual	eustom FRP additional bars
Example No. 7.12 Example No. 7.13 Example No. 7.14			ASCE_rcjrs13.bpf ASCE_rcjrs14.bpf	Secondary Primary	Existing+New Existing+New		V	4		~	*	ý	Custom	custom material
Example No. 2.15 Example No. 2.16			ASCE_rcjrs15.bpf ASCE_rcjrs16.bpf	Seondary Seondary	New+New New+New			77				77	Usual	
Example No. 8.1 Example No. 8.2 Example No. 8.3			ASCE_rejics2.bpf ASCE_rejics3.bpf	Primary Primary	Existing+New Existing+New		47	~	~			1	Custom	custom material
Example No. 8.4 Example No. 8.5			ASCE_rcjlcs4.bpf ASCE_rcjlcs5.bpf	Secondary Secondary	New+New New+New		~	4		V	~	V	Custom	
Example No. 8.6 Example No. 8.7 Example No. 8.8			ASCE_rcjlcs6.bpf ASCE_rcjlcs7.bpf ASCE_rcjlcs8.bpf	Secondary Secondary Secondary	Existing+New Existing+New		~		44	~	777		Usual Usual Custom	assymetric additional bars
Example No. 8.9 Example No. 8.10	ASCE 41-13	JACKETED L-Section	ASCE_rcjlcs9.bpf ASCE_rcjlcs10.bpf	Primary Primary	New+New New+New		×.		V	Ń		1	Usual Custom	custom material custom FRP
Example No. 8.11 Example No. 8.12 Example No. 8.13			ASCE_rcjlcs11.bpf ASCE_rcjlcs12.bpf ASCE_rcjlcs13.bpf	Primary Secondary	New+New New+New Existing+New		~	1	×		~	777	Usual Usual Custom	additional bars
Example No. 8.14 Example No. 2.15			ASCE_rcjlcs14.bpf ASCE_rcjlcs15.bpf	Primary Secondary	Existing+New New+Existing		~	4		V	~~~~	~	Custom Usual	
Example No. 2.16 Example No. 9.1			ASCE_rcjlcs16.bpf ASCE_rcjtcs1.bpf	Secondary Primary Primary	New+Existing Existing+New		al	1	Ĵ.		~	4	Usual Usual	
Example No. 9.2 Example No. 9.3 Example No. 9,4			ASCE_rcjtcs2.bpf ASCE_rcjtcs3.bpf ASCE_rcjtcs4.bpf	Primary Secondary	Existing+New Existing+New New+New		44.4	1	×		~	7	Usual Custom	custom material
Example No. 9.5 Example No. 9.6			ASCE_rcjtcs5.bpf ASCE_rcjtcs6.bpf	Secondary Secondary	New+New New+New		~		×	V	×.	~	Usual	assymetric
Example No. 9.7 Example No. 9.8 Example No. 9.9	ASCE 41-13	JACKETED T-Section	ASCE_rcjtcs7.bpf ASCE_rcjtcs8.bpf ASCE_rcjtcs9.bof	Secondary Secondary Primary	Existing+New Existing+New New+New		~		V	17	2	1	Usual Custom Usual	custom material
Example No. 9.10 Example No. 9.11			ASCE_rcjtcs10.bpf ASCE_rcjtcs11.bpf	Primary Secondary	New+New New+New		44		**		77	N.	Custom Usual	custom FRP additional bars
Example No. 9.12 Example No. 9.13 Example No. 9.14			ASCE_rcjtcs12.bpf ASCE_rcjtcs13.bpf ASCE_rcjtcs13.bpf	Primary Secondary Primary	Existing+New Existing+New		~	44		J	ž.	7	Custom	custom material
Example No. 2.15 Example No. 2.16			ASCE_rcjtcs15.bpf ASCE_rcjtcs16.bpf	Primary	New+Existing New+Existing		×	4			~		Usual	
Example No. 10.1 Example No. 10.2			ASCE_rcjcs1.bpf ASCE_rcjcs2.bpf	Primary	Existing+New Existing+New		X	4	V			Y	Usual Custom	sustem
Example No. 10.3 Example No. 10.4 Example No. 10.5			ASCE_rcjcs3.bpf ASCE_rcjcs4.bpf ASCE_rcjcs5.bpf	Secondary Secondary	New+New New+New		2	7		4	\checkmark	1	Custom Usual	custom material
Example No. 10.6 Example No. 10.7			ASCE_rcjcs6.bpf ASCE_rcjcs7.bpf	Secondary Secondary	New+New Existing+New		~		77		77	11. N. N. N.	Usual Usual	additional bars
Example No. 10.8 Example No. 10.9 Example No. 10.10	ASCE 41-13	JACKETED CIRCULAR	ASCE_rejes8.bpf ASCE_rejes9.bpf	Secondary Primary Primary	Existing+New New+New		7		J	44	4	1	Custom Usual Custom	custom material
Example No. 10.10 Example No. 10.11			ASCE_rejes10.bpf ASCE_rejes12.bpf	Secondary Primary	New+New New+New		Ž	~	7		ž	1	Usual Usual	additional bars
Example No. 10.13 Example No. 10.14			ASCE_rcjcs13.bpf ASCE_rcjcs14.bpf	Secondary Primary	Existing+New Existing+New		~	4		~	7	4	Custom	custom material
Example No. 2.15 Example No. 2.16 Example No. 11.1			ASCE_rcjcs15.bpf ASCE_rcjcs16.bpf ASCE_JBeam1.bpf	Primary Primary Primary	New+New New+New Existing+New			777			-	4	Usual Usual	
Example No. 11.2 Example No. 11.3			ASCE_JBeam2.bpf ASCE_JBeam3.bpf	Primary Primary	Existing+New Existing+New			1	4			44	Custom Usual	custom material
Example No. 11.4 Example No. 11.5			ASCE_JBeam4.bpf ASCE_JBeam5.bpf	Secondary Secondary	New+New New+New			~	-1	~	~	~	Usual	
Example No. 11.8 Example No. 11.8	ASCE 41-13	JACKETED BEAM	ASCE_JBeam7.bpf ASCE_JBeam8.bpf	Secondary Secondary	Existing+New Existing+New				ž	V	17		Usual Custom	additional bars
Example No. 11.9 Example No. 11.10			ASCE_JBeam9.bpf ASCE_JBeam10.bpf	Primary	New+New New+New				Y	~	Y.	1	Custom	custom material
Example No. 11.11 Example No. 11.12 Example No. 11.13			ASCE_JBeam11.bpf ASCE_JBeam12.bpf ASCE_JBeam13.bpf	Primary Secondary	New+New New+New Existing+New			77	V		~	177	Usual Usual Custom	custom material
Example No. 11.14			ASCE_JBeam14.bpf	Primary	Existing+New					V	V		Custom	

As it is shown, in the above table, all the parameters that affect the chord rotation capacity and the shear capacity of all the section types have been examined.

Chapter 2 Capacity Models for Assessment and Checks according to American Society of Civil Engineers (ASCE 41-17)

In this chapter the parameters used for the structures assessment according to ASCE 41-17 are presented.

CAPACITY MODELS FOR ASSESSMENT AND CHECKS

All the member checks (chord rotation capacity and shear capacity) should be carried out for all the elements of every floor, according to sections 10 of ASCE 41-17, 11 of ACI 318-11 and 11 of ACI 440, taking into account the Table 7-7 of ASCE 41-17. Interstorey drift ratio should be checked for shear walls controlled by shear. Moreover, beam-column joints checks can be employed in order to check the joint's shear force.

Deformation Capacity

The deformation capacity of beams, columns and walls controlled by flexure is defined in terms of the chord rotation θ , that is the angle between the tangent to the axis at the yielding end and the chord connecting that end with the end of the shear span (L_V=M/V=moment/shear at the end section). The chord rotation is also equal to the element drift ratio, which is the deflection at the end of the shear span with respect to the tangent to the axis at the yielding end divided by the shear span.

Deformation capacity of beams, columns and walls controlled by flexure is highly influenced by the lack of appropriate seismic resistant detailing in longitudinal reinforcement, as well as whether there are smooth bars. Inadequate development of splicing along the span (beams) and height (columns); and inadequate embedment into beam-column joints can control the members' response to seismic action, drastically limiting its capacity in respect to the situation in which the reinforcement is considered fully effective. The above limitations to the deformation capacity are taken into consideration.

The total chord rotation capacity at ultimate of concrete members under cyclic loading is calculated as the sum of the chord rotation at yielding and the plastic part of the chord rotation capacity

$$\theta = \theta_{\rm v} + \theta_{\rm p}$$

The chord rotation capacity at yield, θ_{y} , is calculated as described below:

• For beams and columns from the equation (4.29) of D.Biskinis (2007):

$$\theta_{y} = \frac{M_{y}L_{s}}{3EI_{eff}}$$

where the effective stiffness value , EI_{eff}, is calculated according to Table 10-5 of ASCE 41-17.

• For walls according to equation (10-5) of ASCE 41-17:

$$\theta_{\rm y} = \left(\frac{M_{\rm y}}{E_{\rm c}\,\rm I}\right) l_{\rm p} \tag{10-5} \text{ ASCE 41-17}$$

The plastic part of the chord rotation capacity is calculated as indicated below:

- For beams according to Table 10-7 of ASCE 41-17
- For non-circular columns according to Table 10-8 of ASCE 41-17 and for circular columns according to Table 10-9 of ASCE 41-17
- For walls controlled by flexure according to Table 10-19 of ASCE 41-17

The deformation capacity of walls controlled by shear is defined in terms of the interstorey drift ratio as indicated in Table 10-20 of ASCE 41-17.

The yield moment capacity is calculated according to the equations of Appendix 7A of KANEPE.

Users are advised to refer to the relevant publications for the definition of the other parameters and further details on the expressions.

FRP wrapping

The contribution of the FRP wrapping to members' capacity is taken into account in the calculation of the yield moment capacity.

Shear Capacity

The Shear capacity of columns is calculated through the following expression according to section 10.4.2.3 of ASCE 41-17.

$$V_{n} = kV_{o} = k \left[\alpha_{Col} \frac{A_{v}f_{y}d}{s} + \lambda \left(\frac{6\sqrt{f_{c}'}}{M/V_{d}} \sqrt{1 + \frac{N_{u}}{6\sqrt{f_{c}'}A_{g}}} \right) 0.8A_{g} \right] (lb/in.^{2} units)$$

$$V_{n} = kV_{o} = k \left[\alpha_{Col} \frac{A_{v}f_{y}d}{s} + \lambda \left(\frac{0.5\sqrt{f_{c}'}}{M/V_{d}} \sqrt{1 + \frac{N_{u}}{0.5\sqrt{f_{c}'}A_{g}}} \right) 0.8A_{g} \right] (Mpa units)$$
(10-3) ASCE 41-17

The shear strength of a shear wall is calculated from the following expression:

$$V_n = V_c + V_s$$
 (22.5.1.1) ACI 318-14

Where the shear strength of a shear wall provided by concrete should be the lesser of the values computed from the equations below:

$$V_{c} = 3.3\lambda \sqrt{f_{c}'}hd + \frac{N_{u}d}{4l_{W}}$$
(Table 11.5.4.6 (d)) ACI 318-14

or

$$V_{c} = \left[0.6\lambda\sqrt{f_{c}'} + \frac{l_{W}\left(1.25\lambda\sqrt{f_{c}'} + 0.2\frac{N_{u}}{l_{W}h}\right)}{\frac{M_{u}-l_{W}}{V_{u}-2}}\right]hd$$
(Table 11.5.4.6 (e)) ACI 318-14

Equation (e) of Table 11.5.4.6 is not applied when the $(M_u/V_u-l_W/2)$ is negative.

The shear strength provided by the transverce reinforcement is computed from the following expression:

$$V_{\rm s} = \frac{A_{\rm v} f_{\rm yt} d}{\rm s}$$
(11.5.4.8) ACI 318-14

According to ASCE 41-17 Unless otherwise noted, where the longitudinal spacing of transverse reinforcement exceeds half the component effective depth measured in the direction of shear, transverse reinforcement shall be assumed to have reduced effectiveness in resisting shear or torsion by a factor of 2(1 - s/d).

The value for V_n at any horizontal section for shear in plane of wall shall not be taken greater than $10\sqrt{f'_c}$ hd according to section 11.5.4.3 of ACI 318-14.

The shear capacity of beam sections is calculated from the equation (22.5.1.1) of ACI 318-14, with the shear strength provided by the transverce reinforcement computed from equation (11.5.4.8) of ACI 318-14 and the shear strength provided by concrete computed by the detailed calculation of section 22.5.5.1 of ACI 318-14, in particular as the least between the Vc values computed from the following equations. According to ASCE 41-17 Unless otherwise noted, where the longitudinal spacing of transverse reinforcement exceeds half the component effective depth measured in the direction of shear, transverse reinforcement shall be assumed to have reduced effectiveness in resisting shear or torsion by a factor of 2(1 - s/d).

$$V_{c} = \left(1.9\lambda\sqrt{f'_{c}} + 2500\rho_{W}\frac{V_{u}d}{M_{u}}\right)b_{w}d$$
(Table 22.5.5.1 (a)) ACI 318-14

$$V_{c} = (1.9\lambda\sqrt{f'_{c}} + 2500\rho_{W})b_{w}d$$
(Table 22.5.5.1 (b)) ACI 318-14

$$V_{c} = 3.5\lambda\sqrt{f'_{c}}b_{w}d.$$
(Table 22.5.5.1 (c)) ACI 318-14

Users are advised to refer to the relevant publications for the definition of the other parameters and further details on the expressions.

FRP wrapping

The shear resistance V_n , may be calculated from expression (10-3) of ASCE 41-17 for columns or the equation (11-2) of ACI 318-11 for beams and shear walls adding in V_s the contribution of the FRP jacket to the shear resistance.

The contribution of the FRP jacket to the shear resistance is computed through the following expression multiplied by a reduction factor ψ_{f} , as described in section 11.3 of ACI 440:

$$V_{f} = \frac{A_{fv} f_{fe} (sina + cosa) d_{fv}}{s_{f}}$$
(11-3) ACI 440

where

$$A_{fv} = 2nt_f w_f$$
(11-4) ACI 440

and

$$f_{fe} = \varepsilon_{fe} E_f$$
(11-5) ACI 440

The total shear strength provided by the sum of the FRP shear reinforcement and the steel shear reinforcement should be limited as indicated in the equation below:

$$\begin{split} V_{s} + V_{f} &\leq 8\sqrt{f_{c}'}b_{w}d & \text{ in in-lb units} \\ V_{s} + V_{f} &\leq 0.66\sqrt{f_{c}'}b_{w}d & \text{ in SI units} \end{split} \tag{11-11} \text{ ACI 440} \end{split}$$

Users are advised to refer to the relevant publications for the definition of the other parameters and further details on the expressions.

Joints Shear Force

The design shear force of joints is calculated through the following expression according to TBDY:

$$V_{e} = 1.25 f_{yk} (A_{s1} + A_{s2}) - V_{kol}$$
(7.11) TBDY

The equation of section 10.4.2.3.2 of ASCE 41-17 is employed for the calculation of the shear capacity of joints:

$$V_{n} = \lambda \gamma \sqrt{f_{c}} A_{j} \qquad (lb/in.^{2} units)$$

$$V_{n} = 0.083\lambda \gamma \sqrt{f_{c}'} A_{j} \qquad (MPa units) \qquad (10-4) ASCE 41-17$$

The value for γ is defined in Table 10-12 of ASCE 41-17.

Users are advised to refer to the relevant publications for the definition of the other parameters and further details on the expressions.

Chapter 3 COMPARISON WITH INDEPENDENT HAND-CALCULATIONS – MEMBER CHECKS

As noted above, this chapter makes use of examples, and their corresponding independent hand-calculations.

EXAMPLES SET 1: RECTANGULAR COLUMN SECTION

EXAMPLE 1.1

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17 (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u> Knowledge Factor , KF= 1.00

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations Existing material of Primary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Primary Member: Steel Strength, fs = fsm = 444.4444 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 555.5556 For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 Existing material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Primary Member: Steel

Strength, fs = fs lower bound = 400.00

265.425

265.425

Member's Properties

Section Height, H = 400.00 Section Width, W = 400.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Ribbed Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

Shear Capacity [kN]

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0057017	0.0057017
[rad]	Life Safety	Start	2	0.0389515	0.0389515

Start

2

Life Safety

Table 3.1. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 1.1

COMPUTER FILES

- ASCE_rcrs1.bpf
- Report_ASCE_rcrs1.pdf

EXAMPLE 1.2

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sect
- Inadequate Lap Length with lb/lb,min = 0.30
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u> Knowledge Factor, KF=0.95

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations For Shear Capacity Calculations Existing material of Primary Member: Concrete Member Shear Force is generally considered as Force-Controlled Action according to Table C7-Strength, fc = fcm = 20.00Existing material of Primary Member: Steel 1. ASCE 41-17. Strength, fs = fsm = 444.4444Lower-bound strengths are used for Force-Note: Especially for the calculation of moment Controlled Actions according to 7.5.1.3, ASCE strengths, the above steel re-bar strengths are 41-17 multiplied by 1.25 according to R18.6.5, ACI Existing material of Primary Member: Concrete 318-14 Strength, $fc = fc_lower_bound = 16.00$ Existing material: Steel Strength, fs = 1.25*fsm Existing material of Primary Member: Steel = 555.5556 Strength, fs = fs_lower_bound = 400.00 **Member's Properties** Section Height, H = 400.00Section Width, W = 400.00Cover Thickness, c = 25.00Element Length, L = 3000.00 **Primary Member Smooth Bars Ductile Steel** With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30**FRP** Wrapping Data Type: Carbon Cured laminate properties (design values) Thickness. t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

16 SeismoBuild Verification Report

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0054425	0.0054425
[rad]	Collapse Prevention	End	2	0.0426202	0.0426202
Shear Capacity [kN]	Collapse Prevention	End	2	445.407	445.407

Table 3.2. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 1.2

COMPUTER FILES

- ASCE_rcrs2.bpf
- Report_ASCE_rcrs2.pdf

EXAMPLE 1.3

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

(3)

<u>Units in N, mm</u> Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 23025.204 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations Existing material of Primary Member: Concrete Strength, fc = fcm = 24.00 Existing material of Primary Member: Steel Strength, fs = fsm = 525.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 656.25

Member's Properties

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 Existing material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00

Existing material of Primary Member: Steel Strength, fs = fs lower bound = 420.00

Section Height, H = 400.00Section Width, W = 400.00Cover Thickness. c = 25.00Element Length, L = 3000.00 Primary Member **Ribbed Bars Ductile Steel** With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars Without Lapping in the Vicinity of the End Regions Adequate Lap Length (lo/lou,min>=1) **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus. Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

18 SeismoBuild Verification Report

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	2	0.0105014	0.0105014
[rad]	Life Safety	Start	3	0.048467	0.048467
Shear Capacity [kN]	Life Safety	Start	3	468.849	468.849

Table 3.3. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 1.3

COMPUTER FILES

- ASCE_rcrs3.bpf
- Report_ASCE_rcrs3.pdf

EXAMPLE 1.4

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- FRP Wrapping
- New Material Sets type

DESCRIPTION

A rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u> Knowledge Factor, KF = 0.85

Materials' Properties

Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations New material of Secondary Member: Concrete Strength, fc = fcm = 30.00 New material of Secondary Member: Steel Strength, fs = fsm = 525.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm = 656.25

Member's Properties

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 20.00

New material of Secondary Member: Steel Strength, fs = fs lower bound = 420.00

Section Height, H = 250.00 Section Width, W = 500.00 Cover Thickness. c = 25.00Element Length, L = 3000.00 Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) **FRP** Wrapping Data Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

20 SeismoBuild Verification Report

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0060023	0.0060023
[rad]	Collapse Prevention	Start	3	0.0647680	0.0647680
Shear Capacity [kN]	Collapse Prevention	Start	3	347.902	347.902

Table 3.4. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 1.4

COMPUTER FILES

- ASCE_rcrs4.bpf
- Report_ASCE_rcrs4.pdf

EXAMPLE 1.5

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars Straight Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u> Knowledge Factor, KF = 0.95

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations New material of Secondary Member: Concrete Strength, fc = fcm = 33.00 New material of Secondary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00

New material of Secondary Member: Steel Strength, fs = fs lower bound = 500.00

Section Height, H = 250.00 Section Width, W = 500.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars Straight Ends Lapped Starting at the End Sections Lap Length lo = 300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	2	0.0057693	0.0057693
[rad]	Life Safety	End	3	0.0357840	0.0357840
Shear Capacity [kN]	Life Safety	End	3	282.576	282.576

Table 3.5. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 1.5

COMPUTER FILES

- ASCE_rcrs5.bpf
- Report_ASCE_rcrs5.pdf

EXAMPLE 1.6

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lb/lb,min = 0.30
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u> New material of Secondary Member: Concrete Strength, fc = fcm = 33.00 New material of Secondary Member: Steel Strength, fs = fsm = 555.56 For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-

Controlled Actions according to 7.5.1.3, ASCE 41-17

For Shear Capacity Calculations

Strength, $fc = fc_lower_bound = 25.00$

New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

New material of Secondary Member: Concrete

For Chord rotation Calculations Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

Section Height, H = 250.00Section Width, W = 500.00 Cover Thickness, c = 25.00 Element Length, L =3000.00 Secondary Member **Ribbed Bars** Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lb/lb,min = 0.30 **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Fable 3.6. Comparison between SeismoBuild and hand-calculated results for EXAMP	LE 1	1.6
---	------	-----

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0052500	0.0052500
[rad]	Collapse Prevention	Start	2	0.0472499	0.0472499
Shear Capacity [kN]	Collapse Prevention	Start	2	394.895	394.895

COMPUTER FILES

- ASCE_rcrs6.bpf
- Report_ASCE_rcrs6.pdf

EXAMPLE 1.7

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars Straight Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u> Existing material: Concrete Strength, fc = fcm = 20.00 Existing material: Steel Strength, fs = fsm = 444.44 For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. For Chord rotation Calculations Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 555.55 For Shear Capacity Calculations Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Member's Properties

Section Height, H = 250.00 Section Width, W = 500.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars Straight Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 5.7. Comparison between seismobulid and nand calculated results for Examin BE 1.
--

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Life Safety	End	2	0.025916	0.025916
[rad]	Operational Level	Start	3	0.0060125	0.0060125
Shear Capacity [kN]	Operational Level	Start	3	226.281	226.281

COMPUTER FILES

- ASCE_rcrs7.bpf
- Report_ASCE_rcrs7.pdf

EXAMPLE 1.8

SUCCINCT DATA

• Secondary Member

- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.90

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material: Concrete Strength, fc = fcm = 20.00

Existing material: Steel Strength, fs = fsm = 444.44

Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14

Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

Section Height, H = 250.00 Section Width, W = 500.00 For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00 Cover Thickness, c = 25.00Element Length, L = 3000.00 Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00**FRP Wrapping Data** Type: Carbon Dry properties (design values) Thickness, t = 1.00 Tensile Strength, ffu = 840.00 Tensile Modulus, Ef = 82000.00 Elongation, efu = 0.009Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.8. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 1.8

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	2	0.0059849	0.0059849
[rad]	Collapse Prevention	End	3	0.0384712	0.0384712
Shear Capacity [kN]	Immediate Occupancy	Start	2	284.427	284.427

COMPUTER FILES

- ASCE_rcrs8.bpf
- Report_ASCE_rcrs8.pdf

EXAMPLE 1.9

SUCCINCT DATA

- Primary Member
- Smooth Bars

- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = lb = 300.00
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, $\kappa = 1.00$

Materials' Properties

Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u> New material: Concrete Strength, fc = fcm = 30.00

New material: Steel Strength, fs = fsm = 525.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14

Existing material: Steel Strength, fs = 1.25*fsm = 656.25

Member's Properties

Section Height, H = 250.00 Section Width, W = 500.00 Cover Thickness, c = 25.00 For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 420.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = lb = 300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 5.7. comparison between seismobund and nand carculated results for Emini EE 1.	Table 3.9	. Comparison	between S	SeismoBuild	and hand	-calculated	results for	EXAMPLE 1.9
--	-----------	--------------	-----------	-------------	----------	-------------	-------------	--------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0004687	0.0004687
[rad]	Collapse Prevention	Start	2	0.0330441	0.0330441
Shear Capacity [kN]	Collapse Prevention	Start	2	244.283	244.283

OMPUTER FILES

- ASCE_rcrs9.bpf
- Report_ASCE_rcrs9.pdf

EXAMPLE 1.10

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lb/lb,min = 0.30
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, $\kappa = 0.80$

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations New material of Primary Member: Concrete Strength, fc = fcm = 33.00 New material of Primary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

Section Height, H = 250.00 Section Width, W = 500.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lb/lb,min = 0.30 No FRP Wrapping Data

<u>For Shear Capacity Calculations</u> Member Shear Force is generally considered as Force-Controlled Action according to Table C7-

1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 420.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.10. Comparison between SeismoBuild and hand-calculated results for EXAMP	LE 1.10

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0058470	0.0058470
[rad]	Life Safety	End	2	0.0258495	0.0258495
Shear Capacity [kN]	Life Safety	End	2	439.646	439.646

COMPUTER FILES

- ASCE_rcrs10.bpf
- Report_ASCE_rcrs10.pdf

EXAMPLE 1.11

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lb/lb,min = 0.30
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u> Existing material: Concrete Strength, fc = fcm = 20.00

Existing material: Steel Strength, fs = fsm = 444.44

Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14

Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

Section Height, H = 250.00 Section Width, W = 500.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars **Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lb/lb,min = 0.30 **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01 Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Tab	le 3	.11	C	omparison	between S	SeismoBu	ild and	hand	-calcu	lated	result	s for	EXAME	PLE 1.	11

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	2	0.0069270	0.0069270
[rad]	Life Safety	Start	3	0.0369804	0.0369804
Shear Capacity [kN]	Operational Level	End	2	366.317	366.317

COMPUTER FILES

- ASCE_rcrs11.bpf
- Report_ASCE_rcrs11.pdf

EXAMPLE 1.12

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, $\kappa = 0.85$

Materials' Properties

Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

New material of Primary Member: Concrete Strength, fc = fcm = 30.00 New material of Primary Member: Steel Strength, fs = fsm = 525.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm = 656.25

Member's Properties

Section Height, H = 250.00

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 420.00

Section Width, W = 500.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135 Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping Data

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.12. Companyon between seismobunu anu nanu-calculateu results for EAAMI EE 1.12
--

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0141763	0.0141763
[rad]	Collapse Prevention	Start	3	0.0603286	0.0603286
Shear Capacity [kN]	Immediate Occupancy	End	2	376.230	376.230

COMPUTER FILES

- ASCE_rcrs12.bpf
- Report_ASCE_rcrs12.pdf

EXAMPLE 1.13

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI

318-14 Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

Section Height, H = 250.00

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00

Section Width, W = 500.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.
ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0139803	0.0139803
[rad]	Life Safety	Start	2	0.0329886	0.0329886
Shear Capacity [kN]	Life Safety	Start	2	169.988	169.988

COMPUTER FILES

- ASCE_rcrs13.bpf
- Report_ASCE_rcrs13.pdf

EXAMPLE 1.14

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = lb = 300.00
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, $\kappa = 1.00$

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm

= 555.55

Member's Properties

Section Height, H = 250.00 Section Width, W = 500.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 **Primary Member Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = lb = 300.00No FRP Wrapping Data Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-

Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Րable 3.14. Comparison	between SeismoBuild a	and hand-calculated	results for EXAMPLE 1.14
------------------------	-----------------------	---------------------	--------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0006963	0.0006963
[rad]	Collapse Prevention	End	2	0.0441006	0.0441006
Shear Capacity [kN]	Immediate Occupancy	End	3	248.574	248.574

COMPUTER FILES

- ASCE_rcrs14.bpf
- Report_ASCE_rcrs14.pdf

EXAMPLE 1.15

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lb/ld>=1)
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, $\kappa = 1.00$

Materials' Properties

Concrete Elasticity, Ec = 19940.411 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations Existing material of Secondary Member: Concrete Strength, fc = fcm = 18.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 500.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 625.00

Mombor's Dronautios

Member's Properties

Section Height, H = 200.00 Section Width, W = 200.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Ribbed Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lb/ld>=1) No FRP Wrapping Data

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Primary Member: Concrete Strength, fc = fc_lower_bound = 18.00 Existing material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

|--|

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0104714	0.0104714
[rad]	Life Safety	Start	2	0.0558556	0.0558556
Shear Capacity [kN]	Life Safety	Start	2	265.425	265.425

COMPUTER FILES

- ASCE_rcrs15.bpf
- Report_ASCE_rcrs15.pdf

EXAMPLE 1.16

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lb/ld>=1)
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, $\kappa = 1.00$

Materials' Properties

Concrete Elasticity, Ec = 19940.411 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations Existing material of Secondary Member: Concrete Strength, fc = fcm = 12.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 400.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = fsm =

400.00 <u>Member's Properties</u>

Section Height, H = 200.00 Section Width, W = 200.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Ribbed Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lb/ld>=1) No FRP Wrapping Data

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Primary Member: Concrete Strength, fc = fc_lower_bound = 18.00 Existing material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.16. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 1.1
--

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0453476	0.0453476
[rad]	Life Safety	Start	2	0.0166916	0.0166916
Shear Capacity [kN]	Life Safety	Start	2	265.425	265.425

COMPUTER FILES

- ASCE_rcrs16.bpf
- Report_ASCE_rcrs16.pdf

EXAMPLES SET 2: L-SHAPED COLUMN SECTION

EXAMPLE 2.1

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

An L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Units in N, mm

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14

Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties Max Height, Hmax = 600.00Min Height, Hmin = 250.00Max Width, Wmax = 600.00Min Width, Wmin = 250.00Cover Thickness, c = 25.00Element Length, L = 3000.00 **Primary Member Ribbed Bars Ductile Steel** With Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the Detailed Calculations (Annex) tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 Existing material of Primary Member: Concrete Strength, $fc = fc_lower_bound = 16.00$ Existing material of Primary Member: Steel

Strength, fs = fs_lower_bound = 400.00

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

	Table 3.18. Com	parison between	SeismoBuild a	and hand-calculated	results for EXAMPLE 2.1
--	-----------------	-----------------	---------------	---------------------	-------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0031930	0.0031930
[rad]	Life Safety	Start	2	0.0436028	0.0436028
Shear Capacity [kN]	Life Safety	Start	2	379.586	379.586

COMPUTER FILES

- ASCE_rclcs1.bpf
- Report_ASCE_rclcs1.pdf

EXAMPLE 2.2

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

An L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

(3

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.90

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u> Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14

Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

Max Height, Hmax = 600.00 Min Height, Hmin = 250.00 Max Width, Wmax = 600.00 Min Width, Wmin = 250.00 For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-

Controlled Actions according to 7.5.1.3, ASCE 41-17

For Shear Capacity Calculations Existing material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00

Cover Thickness, c = 25.00 Element Length, L = 3000.00 **Primary Member** Smooth Bars **Ductile Steel** With Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01 Number of directions, NoDir = 1

Fiber orientations, bi: 0.00° Number of layers, NL = 1 Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.19. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 2.2

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0057202	0.0057202
[rad]	Collapse Prevention	End	2	0.0393551	0.0393551
Shear Capacity [kN]	Immediate Occupancy	Start	3	341.618	341.618

COMPUTER FILES

- ASCE_rclcs2.bpf
- Report_ASCE_rclcs2.pdf

EXAMPLE 2.3

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

An L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The

employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 23025.204 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material of Primary Member: Concrete Strength, fc = fcm = 24.00 Existing material of Primary Member: Steel Strength, fs = fsm = 525.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 656.25

Member's Properties

Max Height, Hmax = 600.00 Min Height, Hmin = 250.00Max Width, Wmax = 600.00Min Width, Wmin = 250.00Cover Thickness, c = 25.00 Element Length, L = 3000.00 **Primary Member** Smooth Bars **Ductile Steel** With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) FRP Wrapping Data Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01

For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Primary Member: Steel Strength, fs = fs_lower_bound = 420.00 Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1 Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

able 3.20. Comparison	between SeismoBuild	l and hand-calculated	results for EXAMPLE 2.3

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	2	0.0056395	0.0056395
[rad]	Life Safety	Start	3	0.0514996	0.0514996
Shear Capacity [kN]	Life Safety	Start	3	379.576	379.576

COMPUTER FILES

- ASCE_rclcs3.bpf
- Report_ASCE_rclcs3.pdf

EXAMPLE 2.4

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- FRP Wrapping
- New Material Sets type

DESCRIPTION

An L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The

employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

Units in N, mm

Knowledge Factor, KF = 0.80

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

New material of Secondary Member: Concrete Strength, fc = fcm = 33.00 New material of Secondary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

Max Height, Hmax = 600.00 Min Height, Hmin = 250.00Max Width, Wmax = 600.00Min Width, Wmin = 250.00Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01

For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 Existing material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00 Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1 Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Fable 3.21. Comparison	between SeismoBu	uild and hand-calcu	lated results for	EXAMPLE 2.4

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0036396	0.0036396
[rad]	Collapse Prevention	Start	3	0.0639696	0.0639696
Shear Capacity [kN]	Collapse Prevention	Start	3	474.270	474.270

COMPUTER FILES

- ASCE_rclcs4.bpf
- Report_ASCE_rclcs4.pdf

EXAMPLE 2.5

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

An L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The

employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

New material of Secondary Member: Concrete Strength, fc = fcm = 33.00 New material of Secondary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 Existing material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

Max Height, Hmax = 600.00 Min Height, Hmin = 250.00 Max Width, Wmax = 600.00 Min Width, Wmin = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00. No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.22. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 2.5

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	2	0.0038585	0.0038585
[rad]	Life Safety	End	3	0.0314700	0.0314700
Shear Capacity [kN]	Operational Level	Start	2	474.293	474.293

COMPUTER FILES

- ASCE_rclcs5.bpf
- Report_ASCE_rclcs5.pdf

EXAMPLE 2.6

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lb/lb,min = 0.30
- FRP Wrapping
- New Material Sets type

DESCRIPTION

An L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

New material of Secondary Member: Concrete Strength, fc = fcm = 33.00 New material of Secondary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm =

694.45

Member's Properties

Max Height, Hmax = 400.00 Min Height, Hmin = 200.00 Max Width, Wmax = 600.00Min Width, Wmin = 200.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lb/lb,min = 0.30 **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01 Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

able 3.23. Comparison betwee	n SeismoBuild and hand-calcu	lated results for EXAMPLE 2.6
------------------------------	------------------------------	-------------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0028853	0.0028853
[rad]	Collapse Prevention	Start	2	0.0485561	0.0485561
Shear Capacity [kN]	Immediate Occupancy	End	2	439.706	439.706

COMPUTER FILES

- ASCE_rclcs6.bpf
- Report_ASCE_rclcs6.pdf

EXAMPLE 2.7

SUCCINCT DATA

- Secondary Member
- RibbedBars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lb/lb,min = 0.30
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

An L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Units in N, mm

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14

Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

Secondary Member

Max Height, Hmax = 600.00 Min Height, Hmin = 250.00 Max Width, Wmax = 600.00 Min Width, Wmin = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 (3

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lb/lb,min = 0.30 No FRP Wrapping Data

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.24. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 2.7

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0063575	0.0063575
[rad]	Life Safety	End	2	0.0317223	0.0317223
Shear Capacity [kN]	Life Safety	End	2	440.330	440.330

COMPUTER FILES

- ASCE_rclcs7.bpf
- Report_ASCE_rclcs7.pdf

EXAMPLE 2.8

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

An L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Units in N, mm

Knowledge Factor, KF = 0.77

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Evisting material: Steel Strength, fs = 1.25*fcm

Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

Max Height, Hmax = 600.00 Min Height, Hmin = 250.00 Max Width, Wmax = 600.00Min Width, Wmin = 250.00Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00**FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01 Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.25. Comparison between	SeismoBuild and hand-calculated	l results for EXAMPLE 2.8
--------------------------------	---------------------------------	---------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	2	0.0038869	0.0038869
[rad]	Collapse Prevention	End	3	0.0328789	0.0328789
Shear Capacity [kN]	Collapse Prevention	End	3	339.055	339.055

COMPUTER FILES

- ASCE_rclcs8.bpf
- Report_ASCE_rclcs8.pdf

EXAMPLE 2.9

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

An L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 23025.204 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations New material of Primary Member: Concrete Strength, fc = fcm = 24.00 New material of Primary Member: Steel Strength, fs = fsm = 525.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm =

New material: Steel Strength, is = 1.25*fsm = 656.25

Member's Properties

Max Height, Hmax = 600.00 Min Height, Hmin = 250.00 Max Width, Wmax = 600.00 Min Width, Wmin = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 420.00

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

|--|

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0004555	0.0004555
[rad]	Collapse Prevention	Start	2	0.0327243	0.0327243
Shear Capacity [kN]	Collapse Prevention	Start	2	420.501	420.501

COMPUTER FILES

- ASCE_rclcs9.bpf
- Report_ASCE_rclcs9.pdf

EXAMPLE 2.10

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

An L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.86

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u> New material: Concrete Strength, fc = fcm = 33.00

New material: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14

New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

Max Height, Hmax = 600.00 Min Height, Hmin = 250.00 Max Width, Wmax = 600.00 Min Width, Wmin = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 No FRP Wrapping Data

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.27. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 2.10

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0063206	0.0063206
[rad]	Life Safety	End	2	0.0227514	0.0227514
Shear Capacity [kN]	Immediate Occupancy	Start	3	431.734	431.734

COMPUTER FILES

- ASCE_rclcs10.bpf
- Report_ASCE_rclcs10.pdf

EXAMPLE 2.11

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type

DESCRIPTION

An L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u> New material: Concrete Strength, fc = fcm =

33.00 New material: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14

New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

Max Height, Hmax = 600.00 Min Height, Hmin = 250.00 Max Width, Wmax = 600.00Min Width, Wmin = 250.00 Cover Thickness, c = 25.00Element Length, L = 3000.00Secondary Member **SmoothBars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 **FRP Wrapping Data** Type: Carbon Dry properties (design values) Thickness, t = 1.00 Tensile Strength, ffu = 840.00 Tensile Modulus, Ef = 82000.00 Elongation, efu = 0.009Number of directions, NoDir = 1 Fiber orientations, bi: 0.00°

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

Number of layers, NL = 1 Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.28. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 2.11

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	2	0.0019057	0.0019057
[rad]	Life Safety	Start	3	0.0370379	0.0370379
Shear Capacity [kN]	Life Safety	Start	3	474.261	474.261

COMPUTER FILES

- ASCE_rclcs11.bpf
- Report_ASCE_rclcs11.pdf

EXAMPLE 2.12

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

An L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.96

Materials' Properties

Concrete Elasticity, Ec = 23025.204 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u> New material of Primary Member: Concrete

Strength, fc = fcm = 24.00 New material of Primary Member: Steel Strength, fs = fsm = 525.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fc = 1.25*fcm =

New material: Steel Strength, fs = 1.25*fsm = 656.25

Member's Properties

Max Height, Hmax = 600.00 Min Height, Hmin = 250.00 Max Width, Wmax = 600.00 Min Width, Wmin = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member SmoothBars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel

21

Strength, fs = fs_lower_bound = 420.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3 29 Com	narison hetween	SeismoBuild and	hand-calculated	results for F	XAMPLE 2 12
1 able 5.29. Com	parison between	Seisillobullu allu	nanu-calculateu	I esuits ioi E	AAMF LE 2.12

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0052617	0.0052617
[rad]	Collapse Prevention	Start	3	0.0618246	0.0618246
Shear Capacity [kN]	Collapse Prevention	Start	3	379.576	379.576

COMPUTER FILES

- ASCE_rclcs12.bpf
- Report_ASCE_rclcs12.pdf

EXAMPLE 2.13

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

An L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Evisting material: Steel Strength, fs = 1.25*fcm

Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

Max Height, Hmax = 600.00 Min Height, Hmin = 250.00 Max Width, Wmax = 600.00 Min Width, Wmin = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member SmoothBars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00

New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.30. Com	parison between	SeismoBuild and	d hand-calculated	results for	EXAMPLE 2.13
rubie bib of dom	pui ison seeneen	beibinobana and	a mana carcanacca	i courto ioi	DIM IN THE PLACE

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0113121	0.0113121
[rad]	Life Safety	Start	2	0.0366319	0.0366319
Shear Capacity [kN]	Operational Level	Start	3	204.335	204.335

COMPUTER FILES

- ASCE_rclcs13.bpf
- Report_ASCE_rclcs13.pdf

EXAMPLE 2.14

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

An L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Steel Elasticity, Es = 200000.00 Concrete Elasticity, Ec = 21019.039

For Chord rotation Calculations

Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Evisting material: Steel Strength fc = 1.25*fcm

Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

Max Height, Hmax = 600.00 Min Height, Hmin = 250.00 Max Width, Wmax = 600.00Min Width, Wmin = 250.00Cover Thickness, c = 25.00Element Length, L = 3000.00 **Primary Member Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00**FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01 Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00

Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.31. Comparison between Se	eismoBuild and hand-calculated	results for EXAMPLE 2.14
-----------------------------------	--------------------------------	--------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0006729	0.0006729
[rad]	Collapse Prevention	End	2	0.0438518	0.0438518
Shear Capacity [kN]	Immediate Occupancy	End	3	440.305	440.305

COMPUTER FILES

- ASCE_rclcs14.bpf
- Report_ASCE_rclcs14.pdf

EXAMPLE 2.15

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

An L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Units in N, mm

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 19940.411 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material of Secondary Member: Concrete Strength, fc = fcm = 18.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Evisiting material. Steel Strength, fa = fem =

Existing material: Steel Strength, fs = fsm = 444.44

Member's Properties

Max Height, Hmax = 450.00 Min Height, Hmin = 200.00 Max Width, Wmax = 450.00 Min Width, Wmin = 200.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member SmoothBars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 12.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.0
ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0123513	0.0123514
[rad]	Life Safety	Start	2	0.0346719	0.0346715
Shear Capacity [kN]	Operational Level	Start	3	206.186	206.188

NOTE: The small difference in the Shear Capacity values is due to the rounding of the shear capacity value exported to the Report.

COMPUTER FILES

- ASCE_rclcs15.bpf
- Report_ASCE_rclcs15.pdf

EXAMPLE 2.16

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

An L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Units in N, mm

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 19940.411 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material of Secondary Member: Concrete Strength, fc = fcm = 18.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Evisiting material. Steel Strength, fa = fem =

Existing material: Steel Strength, fs = fsm = 444.44

Member's Properties

Max Height, Hmax = 450.00 Min Height, Hmin = 200.00 Max Width, Wmax = 450.00 Min Width, Wmin = 200.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member SmoothBars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 12.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.0

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0123513	0.0123514
[rad]	Life Safety	Start	2	0.0011697	0.0011697
Shear Capacity [kN]	Operational Level	Start	3	148.561	148.562

NOTE: The small difference in the Shear Capacity values is due to the rounding of the shear capacity value exported to the Report.

COMPUTER FILES

- ASCE_rclcs16.bpf
- Report_ASCE_rclcs16.pdf

EXAMPLES SET 3: T-SHAPED COLUMN SECTION

EXAMPLE 3.1

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Evisting material: Steel Strength fa = 1.25*fcm

Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

Max Height, Hmax = 550.00

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00

Min Height, Hmin = 250.00 Max Width, Wmax = 750.00 Min Width, Wmin = 250.00 Eccentricity, Ecc = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Ribbed Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

 Table 3.34. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 3.1

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0032199	0.0032199
[rad]	Life Safety	Start	2	0.0440946	0.0440946
Shear Capacity [kN]	Operational Level	End	3	386.774	386.774

COMPUTER FILES

- ASCE_rctcs1.bpf
- Report_ASCE_rctcs1.pdf

EXAMPLE 3.2

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.85

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm

= 555.55

Member's Properties

Max Height, Hmax = 550.00 Min Height, Hmin = 250.00 Max Width, Wmax = 750.00 Min Width, Wmin = 250.00 Eccentricity, Ecc = 250.00Cover Thickness, c = 25.00 Element Length, L = 3000.00 **Primary Member** Smooth Bars **Ductile Steel** With Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00 Fiber orientations, bi: 0.00° Number of layers, NL = 1 Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.35. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 3.2

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0046068	0.0046068
[rad]	Collapse Prevention	End	2	0.0535352	0.0535352
Shear Capacity [kN]	Immediate Occupancy	Start	3	295.886	295.886

COMPUTER FILES

- ASCE_rctcs2.bpf
- Report_ASCE_rctcs2.pdf

EXAMPLE 3.3

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The

employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 23025.204 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material of Primary Member: Concrete Strength, fc = fcm = 24.00 Existing material of Primary Member: Steel Strength, fs = fsm = 525.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 656.25

Member's Properties

For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 420.00

Max Height, Hmax = 550.00 Min Height, Hmin = 250.00 Max Width, Wmax = 750.00Min Width, Wmin = 250.00 Eccentricity, Ecc = 250.00Cover Thickness, c = 25.00 Element Length, L = 3000.00 **Primary Member** Smooth Bars **Ductile Steel** With Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00

Elongation, efu = 0.01 Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1 Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.36. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 3.3

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	2	0.0069868	0.0069868
[rad]	Life Safety	Start	3	0.0499861	0.0499861
Shear Capacity [kN]	Operational Level	End	2	550.083	550.083

COMPUTER FILES

- ASCE_rctcs3.bpf
- Report_ASCE_rctcs3.pdf

EXAMPLE 3.4

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- FRP Wrapping
- New Material Sets type

DESCRIPTION

A T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.89

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations New material of Secondary Member: Concrete Strength, fc = fcm = 33.00 New material of Secondary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

Max Height, Hmax = 550.00 Min Height, Hmin = 250.00 Max Width, Wmax = 750.00Min Width, Wmin = 250.00 Eccentricity, Ecc = 250.00Cover Thickness, c = 25.00Element Length, L = 3000.00Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars Straight Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values)

For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00 Thickness, t = 1.016Tensile Strength, ffu = 1055.00Tensile Modulus, Ef = 64828.00Elongation, efu = 0.01Number of directions, NoDir = 1Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

able 3.37. Comparison betwee	n SeismoBuild and hand-calcula	ted results for EXAMPLE 3.4
------------------------------	--------------------------------	-----------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0034629	0.0034629
[rad]	Collapse Prevention	Start	3	0.0627441	0.0627441
Shear Capacity [kN]	Immediate Occupancy	End	3	482.209	482.209

COMPUTER FILES

- ASCE_rctcs4.bpf
- Report_ASCE_rctcs4.pdf

EXAMPLE 3.5

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations New material of Secondary Member: Concrete Strength, fc = fcm = 33.00 New material of Secondary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm =

Member's Properties

694.45

Max Height, Hmax = 550.00 Min Height, Hmin = 250.00 Max Width, Wmax = 750.00 Min Width, Wmin = 250.00 Eccentricity, Ecc = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = lb = 300.00 No FRP Wrapping

For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	2	0.0024584	0.0024584
[rad]	Life Safety	End	3	0.0304079	0.0304079
Shear Capacity [kN]	Life Safety	End	3	482.740	482.740

Table 3.38. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 3.5

COMPUTER FILES

- ASCE_rctcs5.bpf
- Report_ASCE_rctcs5.pdf

EXAMPLE 3.6

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type

DESCRIPTION

A T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

New material of Secondary Member: Concrete Strength, fc = fcm = 33.00 New material of Secondary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm =

694.45

Member's Properties

Max Height, Hmax = 550.00Min Height, Hmin = 250.00 Max Width, Wmax = 750.00Min Width, Wmin = 250.00Eccentricity, Ecc = 200.00Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00°

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

Number of layers, NL = 1 Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.39. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 3.6

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0030636	0.0030636
[rad]	Collapse Prevention	Start	2	0.0659955	0.0659955
Shear Capacity [kN]	Immediate Occupancy	End	2	687.149	687.149

COMPUTER FILES

- ASCE_rctcs6.bpf
- Report_ASCE_rctcs6.pdf

EXAMPLE 3.7

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Units in N, mm

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Evisting material: Steel Strength fc = 1.25*fcm

Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

Max Height, Hmax = 550.00 Min Height, Hmin = 250.00 Max Width, Wmax = 750.00 Min Width, Wmin = 250.00 Eccentricity, Ecc = 250.00 For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00

Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

 Table 3.40. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 3.7

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0054210	0.0054210
[rad]	Life Safety	End	2	0.0291577	0.0291577
Shear Capacity [kN]	Operational Level	Start	3	348.122	348.122

COMPUTER FILES

- ASCE_rctcs7.bpf
- Report_ASCE_rctcs7.pdf

EXAMPLE 3.8

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Units in N, mm

Knowledge Factor, KF = 0.93

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14

Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

Max Height, Hmax = 550.00 Min Height, Hmin = 250.00 Max Width, Wmax = 750.00Min Width, Wmin = 250.00Eccentricity, Ecc = 250.00Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00**FRP Wrapping Data** Type: Carbon Dry properties (design values) Thickness, t = 1.00 Tensile Strength, ffu = 840.00 Tensile Modulus, Ef = 82000.00 Elongation, efu = 0.009Number of directions, NoDir = 1 Fiber orientations, bi: 0.00°

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-New material of Primary Member: Concrete

1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00

Number of layers, NL = 1 Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.41. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 3.8

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	2	0.0058383	0.0058383
[rad]	Collapse Prevention	End	3	0.0396240	0.0396240
Shear Capacity [kN]	Collapse Prevention	End	3	359.104	359.104

COMPUTER FILES

- ASCE_rctcs8.bpf
- Report_ASCE_rctcs8.pdf

EXAMPLE 3.9

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 28781.504 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations New material of Primary Member: Concrete Strength, fc = fcm = 37.50 New material of Primary Member: Steel Strength, fs = fsm = 625.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm =

781.25

Member's Properties

Max Height, Hmax = 550.00

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

Min Height, Hmin = 250.00 Max Width, Wmax = 750.00 Min Width, Wmin = 250.00 Eccentricity, Ecc = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

 Table 3.42. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 3.9

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0003835	0.0003835
[rad]	Collapse Prevention	Start	2	0.0292333	0.0292333
Shear Capacity [kN]	Operational Level	End	3	452.316	452.316

COMPUTER FILES

- ASCE_rctcs9.bpf
- Report_ASCE_rctcs9.pdf

EXAMPLE 3.10

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Units in N, mm

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

New material of Primary Member: Concrete Strength, fc = fcm = 33.00 New material of Primary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm =

694.45

Member's Properties

Max Height, Hmax = 550.00 Min Height, Hmin = 250.00 Max Width, Wmax = 750.00 Min Width, Wmin = 250.00 Eccentricity, Ecc = 250.00 For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with Io/Iou,min = 0.30 No FRP Wrapping Data

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

 Table 3.43. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 3.10

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0053945	0.0053945
[rad]	Life Safety	End	2	0.0209809	0.0209809
Shear Capacity [kN]	Immediate Occupancy	Start	3	404.631	404.631

COMPUTER FILES

- ASCE_rctcs10.bpf
- Report_ASCE_rctcs10.pdf

EXAMPLE 3.11

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type

DESCRIPTION

A T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u> New material of Primary Member: Concrete Strength, fc = fcm = 33.00 New material of Primary Member: Steel

Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14

New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

Max Height, Hmax = 550.00 Min Height, Hmin = 250.00 Max Width, Wmax = 750.00 Min Width, Wmin = 250.00 Eccentricity, Ecc = 250.00Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars **Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00°

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

Number of layers, NL = 1 Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.44. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 3.11

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	2	0.0017666	0.0017666
[rad]	Life Safety	Start	3	0.0506044	0.0506044
Shear Capacity [kN]	Life Safety	Start	3	434.899	434.899

COMPUTER FILES

- ASCE_rctcs11.bpf
- Report_ASCE_rctcs11.pdf

EXAMPLE 3.12

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 28781.504 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations New material of Primary Member: Concrete Strength, fc = fcm = 37.50 New material of Primary Member: Steel Strength, fs = fsm = 625.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm =

Member's Properties

781.25

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

Max Height, Hmax = 550.00 Min Height, Hmin = 250.00 Max Width, Wmax = 750.00 Min Width, Wmin = 250.00 Eccentricity, Ecc = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping Data

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

 Table 3.45. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 3.12

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0067762	0.0067762
[rad]	Collapse Prevention	Start	3	0.0523034	0.0523034
Shear Capacity [kN]	Collapse Prevention	Start	3	404.651	404.651

COMPUTER FILES

- ASCE_rctcs12.bpf
- Report_ASCE_rctcs12.pdf

EXAMPLE 3.13

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- ExistingMaterial Sets type

DESCRIPTION

A T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.85

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Evisting material: Steel Strength fs = 1.25*fcm

Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

Max Height, Hmax = 550.00 Min Height, Hmin = 250.00 Max Width, Wmax = 750.00 Min Width, Wmin = 250.00 For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Eccentricity, Ecc = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

 Table 3.46. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 3.13

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0081952	0.0081952
[rad]	Life Safety	Start	2	0.0310498	0.0310498
Shear Capacity [kN]	Operational Level	Start	3	159.342	159.342

COMPUTER FILES

- ASCE_rctcs13.bpf
- Report_ASCE_rctcs13.pdf

EXAMPLE 3.14

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars Straight Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- FRP Wrapping
- ExistingMaterial Sets type

DESCRIPTION

A T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.90

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm

Existing material: Steel Strength, is = 1.25*fsm = 555.55

Member's Properties

Max Height, Hmax = 550.00 Min Height, Hmin = 250.00 Max Width, Wmax = 750.00Min Width, Wmin = 250.00Eccentricity, Ecc = 250.00Cover Thickness, c = 25.00 Element Length, L = 3000.00 **Primary Member Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00**FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00°

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Number of layers, NL = 1 Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.47. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 3.14

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0018757	0.0018757
[rad]	Collapse Prevention	End	2	0.0456259	0.0456259
Shear Capacity [kN]	Immediate Occupancy	End	3	151.053	151.053

COMPUTER FILES

- ASCE_rctcs14.bpf
- Report_ASCE_rctcs14.pdf

EXAMPLE 3.15

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars Straight Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min = lb/ld >=1)
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.85

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14

Existing material: Steel Strength, fs = fsm = 444.44

For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Member's Properties

Max Height, Hmax = 300.00 Min Height, Hmin = 150.00 Max Width, Wmax = 300.00 Min Width, Wmin = 150.00 Eccentricity, Ecc = 75.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min = lb/ld >=1) No FRP Wrapping NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.48. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 3.13

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0295025	0.0295025
[rad]	Life Safety	Start	2	0.0478975	0.0478975
Shear Capacity [kN]	Operational Level	Start	3	104.465	104.465

COMPUTER FILES

- ASCE_rctcs15.bpf
- Report_ASCE_rctcs15.pdf

EXAMPLE 3.16

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars Straight Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min = lb/ld >=1)
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.85

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength fs = fsm =

Existing material: Steel Strength, fs = fsm = 444.44

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel

Strength, fs = fs_lower_bound = 400.00 No FRP Wrapping

Member's Properties

Max Height, Hmax = 300.00 Min Height, Hmin = 150.00 Max Width, Wmax = 300.00 Min Width, Wmin = 150.00 Eccentricity, Ecc = 75.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min = lb/ld >=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

 Table 3.49. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 3.16

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0335758	0.0335758
[rad]	Life Safety	Start	2	0.0396267	0.0396267
Shear Capacity [kN]	Operational Level	Start	3	109.333	109.333

COMPUTER FILES

- ASCE_rctcs16.bpf
- Report_ASCE_rctcs16.pdf

EXAMPLES SET 4: CIRCULAR COLUMN SECTION

EXAMPLE 4.1

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14

Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

Diameter, D = 400.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Ribbed Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00
ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

	Table 3.50.	Comparison	between Seism	oBuild and h	and-calculated	results for EX	XAMPLE 4.1
--	-------------	------------	---------------	--------------	----------------	----------------	------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0079414	0.0079414
[rad]	Life Safety	Start	2	0.0619788	0.0619788
Shear Capacity [kN]	Life Safety	Start	2	208.476	208.476

COMPUTER FILES

- ASCE_rccs1.bpf
- Report_ASCE_rccs1.pdf

EXAMPLE 4.2

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Units in N, mm

Knowledge Factor, KF = 0.85

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Evisting material: Steel Strength fc = 1.25*fcm

Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

Diameter. D = 400.00Cover Thickness, c = 25.00 Element Length, L = 3000.00 **Primary Member** Smooth Bars **Ductile Steel** With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Fable 3.51. Comparison	between SeismoBuild	and hand-calculated	results for EXAMPLE 4.2
------------------------	---------------------	---------------------	-------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chard Potation Conscitu	Immediate Occupancy	Start	3	0.0147376	0.0147376
	Collapse Prevention	End	2	0.0430652	0.0430652
Shear Capacity [kN]	Immediate Occupancy	Start	3	267.606	267.606

COMPUTER FILES

- ASCE_rccs2.bpf
- Report_ASCE_rccs2.pdf

EXAMPLE 4.3

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 23025.204 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations Existing material of Primary Member: Concrete Strength, fc = fcm = 24.00 Existing material of Primary Member: Steel Strength, fs = fsm = 525.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 656.25

Member's Properties

Diameter, D = 400.00Cover Thickness, c = 25.00Element Length, L = 3000.00 **Primary Member** Smooth Bars **Ductile Steel** With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) **FRP** Wrapping Data Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 Existing material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Primary Member: Steel Strength, fs = fs_lower_bound = 420.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.52. Comparison between SeismoBuild and hand-calculated results for EXAMPI	LE 4.3
---	--------

Check	Limit State		Local Axis	SeismoBuild 2018	Hand calculations
Chard Potation Canadity	Operational Level	End	2	0.0214777	0.0214777
Chord Rotation Capacity	Life Safety	Start	3	0.0860797	0.0860797
Shear Capacity [kN]	Operational Level	End	2	314.830	314.830

COMPUTER FILES

- ASCE_rccs3.bpf
- Report_ASCE_rccs3.pdf

EXAMPLE 4.4

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- FRP Wrapping
- New Material Sets type

DESCRIPTION

A circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.90

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations New material of Secondary Member: Concrete Strength, fc = fcm = 33.00 New material of Secondary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

Diameter, D = 400.00Cover Thickness, c = 25.00Element Length, L = 3000.00 Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) **FRP Wrapping** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Fable 3.53. Comparison between S	eismoBuild and hand-calculated	results for EXAMPLE 4.4
----------------------------------	--------------------------------	-------------------------

Check Limit State		Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0079786	0.0079786
[rad]	Collapse Prevention	Start	3	0.1013397	0.1013397
Shear Capacity [kN]	Immediate Occupancy	End	3	393.301	393.301

COMPUTER FILES

- ASCE_rccs4.bpf
- Report_ASCE_rccs4.pdf

EXAMPLE 4.5

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations New material of Secondary Member: Concrete Strength, fc = fcm = 33.00 New material of Secondary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

Diameter, D = 400.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.54. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 4.	Table 3	3.54.	Comparison	between	SeismoBuild	and hand-	calculated	results for	EXAMPLE 4.5
---	---------	-------	------------	---------	-------------	-----------	------------	-------------	-------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	2	0.0073756	0.0073756
[rad]	Life Safety	End	3	0.0309451	0.0309451
Shear Capacity [kN]	Life Safety	End	3	323.577	323.577

COMPUTER FILES

- ASCE_rccs5.bpf
- Report_ASCE_rccs5.pdf

EXAMPLE 4.6

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type

DESCRIPTION

A circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

New material of Secondary Member: Concrete Strength, fc = fcm = 33.00 New material of Secondary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm =

694.45

Member's Properties

Diameter, D = 400.00Cover Thickness. c = 25.00Element Length, L = 3000.00Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 **FRP Wrapping Data** Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table	3.55.0	Comparison	between Sei	ismoBuild	and hand	l-calculate	ed results f	or EXAMPLE 4.0	6

Check Limit State		Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0084443	0.0084443
[rad]	Collapse Prevention	Start	2	0.0684447	0.0684447
Shear Capacity [kN]	Collapse Prevention	Start	2	330.223	330.223

COMPUTER FILES

- ASCE_rccs6.bpf
- Report_ASCE_rccs6.pdf

EXAMPLE 4.7

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Units in N, mm

Knowledge Factor, KF = 0.80

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14

Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties Diameter, D = 400.00

Secondary Member

Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00 Cover Thickness. c = 25.00Element Length, L = 3000.00

41-17

Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 No FRP Wrapping Data

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the Detailed Calculations (Annex) tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

For Shear Capacity Calculations

1, ASCE 41-17.

Member Shear Force is generally considered as

Force-Controlled Action according to Table C7-

Lower-bound strengths are used for Force-

Existing material of Secondary Member:

Controlled Actions according to 7.5.1.3, ASCE

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.56. Comparison bet	tween SeismoBuild and hand	-calculated results for EXAMPLE 4.7
----------------------------	----------------------------	-------------------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0131418	0.0131418
[rad]	Life Safety	End	2	0.0301417	0.0301417
Shear Capacity [kN]	Operational Level	Start	3	207.232	207.232

COMPUTER FILES

- ASCE_rccs7.bpf
- Report_ASCE_rccs7.pdf

EXAMPLE 4.8

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.80

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14

Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

Diameter, D = 400.00Cover Thickness. c = 25.00Element Length, L = 3000.00 Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135° Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00**FRP Wrapping Data** Type: Carbon Dry properties (design values) Thickness, t = 1.00Tensile Strength, ffu = 840.00 Tensile Modulus, Ef = 82000.00 Elongation, efu = 0.009Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.57. Comparison between SeismoBuild and hand-calculated results for EXAMPL	E 4.8
---	-------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	2	0.008	0.008
[rad]	Collapse Prevention	End	3	0.0351100	0.0351100
Shear Capacity [kN]	Immediate Occupancy	Start	2	211.415	211.415

COMPUTER FILES

- ASCE_rccs8.bpf
- Report_ASCE_rccs8.pdf

EXAMPLE 4.9

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Units in N, mm

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 24870.062 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

New material of Primary Member: Concrete Strength, fc = fcm = 28.00 New material of Primary Member: Steel Strength, fs = fsm = 420.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm = 525.00

Member's Properties

Diameter, D = 400.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = lb = 300.00 No FRP Wrapping

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00

For Shear Capacity Calculations

New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

$1 abic 3.50$, comparison between seismobulla and nana calculated results for Examin DE ± 7
--

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0010929	0.0010929
[rad]	Collapse Prevention	Start	2	0.0467222	0.0467222
Shear Capacity [kN]	Collapse Prevention	Start	2	214.388	214.388

COMPUTER FILES

- ASCE_rccs9.bpf
- Report_ASCE_rccs9.pdf

EXAMPLE 4.10

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Units in N, mm

Knowledge Factor, KF = 0.75

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations New material of Primary Member: Concrete Strength, fc = fcm = 33.00New material of Primary Member: Steel Strength, fs = fsm = 555.56Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI

318-14 New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

Diameter. D = 400.00Cover Thickness, c = 25.00 Element Length, L = 3000.00 **Primary Member Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30

No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the Detailed Calculations (Annex) tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete

Strength, $fc = fc_lower_bound = 25.00$ New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.59.	Comparison	between Seisr	noBuild and	hand-calculated	results for	EXAMPLE 4.10
-------------	------------	---------------	-------------	-----------------	-------------	--------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0156324	0.0156324
[rad]	Life Safety	End	2	0.0372831	0.0372831
Shear Capacity [kN]	Immediate Occupancy	Start	3	323.561	323.561

COMPUTER FILES

- ASCE_rccs10.bpf
- Report_ASCE_rccs10.pdf

EXAMPLE 4.11

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type

DESCRIPTION

A circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

New material of Primary Member: Concrete Strength, fc = fcm = 33.00 New material of Primary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

Diameter, D = 400.00Cover Thickness, c = 25.00Element Length, L = 3000.00 Secondary Member Smooth Bars **Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.60. Comparison between SeismoBuild and hand-calculated results for EXAMP	LE 4. 1	.1
--	---------	----

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	2	0.0101084	0.0101084
[rad]	Life Safety	Start	3	0.0502246	0.0502246
Shear Capacity [kN]	Operationl Level	End	2	393.311	393.311

COMPUTER FILES

- ASCE_rccs11.bpf
- Report_ASCE_rccs11.pdf

EXAMPLE 4.12

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Section
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Units in N, mm

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 24870.062 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

New material of Primary Member: Concrete Strength, fc = fcm = 28.00 New material of Primary Member: Steel Strength, fs = fsm = 420.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm = 525.00

Member's Properties

Diameter, D = 400.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping Data

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00

For Shear Capacity Calculations

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0164748	0.0164748
[rad]	Collapse Prevention	Start	3	0.0828339	0.0828339
Shear Capacity [kN]	Immediate Occupancy	End	2	270.862	270.862

COMPUTER FILES

- ASCE_rccs12.bpf
- Report_ASCE_rccs12.pdf

EXAMPLE 4.13

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Units in N, mm

Knowledge Factor, KF = 0.86

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength fc = 1.25*fcm

Existing material: Steel Strength, fs = 1.25*fsm = 555.55

<u>Member's Properties</u> Diameter, D = 400.00

Cover Thickness, c = 25.00

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Section Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.62. Com	parison between S	SeismoBuild and hand	d-calculated resul	ts for EXAMPLE 4. 13

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0285949	0.0285949
[rad]	Life Safety	Start	2	0.0430952	0.0430952
Shear Capacity [kN]	Life Safety	Start	2	91.016	91.016

COMPUTER FILES

- ASCE_rccs13.bpf
- Report_ASCE_rccs13.pdf

EXAMPLE 4.14

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Units in N, mm

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm

= 555.55

Member's Properties

Diameter, D = 400.00Cover Thickness, c = 25.00 Element Length, L = 3000.00 **Primary Member Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00**FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

For Shear Capacity Calculations

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.63. Comparison between	SeismoBuild and hand-calculated	results for EXAMPLE 4. 14
--------------------------------	---------------------------------	---------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity [rad]	Immediate Occupancy	End	3	0.0018634	0.0018634
	Collapse Prevention	End	2	0.0513173	0.0513173
Shear Capacity [kN]	Immediate Occupancy	End	3	286.337	286.337

COMPUTER FILES

- ASCE_rccs14.bpf
- Report_ASCE_rccs14.pdf

EXAMPLE 4.15

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 100

Materials' Properties

Concrete Elasticity, Ec = 18203.022 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations

New material of Primary Member: Concrete Strength, fc = fcm = 15.00 New material of Primary Member: Steel Strength, fs = fsm = 420.0 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm = 525.00

Member's Properties

Diameter, D = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Section Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

For Shear Capacity Calculations Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 10.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.0

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Гable 3.64. Comparison between SeismoBuild and hand-calculated resul	s for EXAMPLE 4.15
--	--------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Collapse Prevention	Start	3	0.0711117	0.0711117
[rad]	Immediate Occupation	End	2	0.0177781	0.0177781
Shear Capacity [kN]	Collapse Prevention	Start	3	270.862	270.862

COMPUTER FILES

- ASCE_rccs15.bpf
- Report_ASCE_rccs15.pdf

EXAMPLE 4.16

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

Units in N, mm

Knowledge Factor, KF = 100

Materials' Properties

Concrete Elasticity, Ec = 18203.022 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations New material of Primary Member: Concrete Strength, fc = fcm = 15.00 New material of Primary Member: Steel Strength, fs = fsm = 420.0 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 New material: Steel Strength, fs = 1.25*fsm = 525.00

Member's Properties

Diameter, D = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Section Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

For Shear Capacity Calculations

1, ASCE 41-17.

41-17

Member Shear Force is generally considered as

Force-Controlled Action according to Table C7-

Lower-bound strengths are used for Force-

Controlled Actions according to 7.5.1.3, ASCE

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 10.00

New material of Primary Member: Steel

Strength, fs = fs_lower_bound = 400.0

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.65. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 4. 16

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Collapse Prevention	Start	3	0.0962133	0.0962133
[rad]	Immediate Occupation	End	2	0.0213033	0.0213033
Shear Capacity [kN]	Collapse Prevention	Start	3	146.498	146.498

COMPUTER FILES

- ASCE_rccs16.bpf
- Report_ASCE_rccs16.pdf

EXAMPLES SET 5: WALL SECTION

EXAMPLE 5.1

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A wall section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00 For Chord rotation Calculations: New material of Primary Member: Concrete Strength, fc = fcm = 20.00 New material of Primary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 555.56

Member's Properties

For Shear Capacity Calculations: Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00

Total Height, Htot = 3000.00 Edges Width, Wedg = 250.00 Edges Height, Hedg = 600.00 Web Width, Wweb = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Ribbed Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The wall member is modeled through an inelastic force-based frame element (infrmFB) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

fable 3.66. Comparison between	SeismoBuild and hand-	-calculated results for	EXAMPLE 5.1
--------------------------------	-----------------------	-------------------------	--------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
	Operational Level	End	3	0.0038582	0.0038582
Chord Rotation Capacity [rad]	Life Safety Considering wall controlled by Shear. Final interstorey drift Capacity: δu,R	Start	2	0.015	0.015
Shear Capacity [kN]	Life Safety	Start	2	166.860	166.860

COMPUTER FILES

- ASCE_rcrws1.bpf
- Report_ASCE_rcrws1.pdf

EXAMPLE 5.2

SUCCINCT DATA

- Primary Member
- SmoothBars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A wall section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.90

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00 For Chord rotation Calculations: For Shear Capacity Calculations: New material of Primary Member: Concrete Member Shear Force is generally considered as Strength, fc = fcm = 20.00Force-Controlled Action according to Table C7-New material of Primary Member: Steel 1. ASCE 41-17. Strength, fs = fsm = 444.44Lower-bound strengths are used for Force-Note: Especially for the calculation of moment Controlled Actions according to 7.5.1.3, ASCE strengths, the above steel re-bar strengths are 41-17 New material of Primary Member: Concrete multiplied by 1.25 according to R18.6.5, ACI 318-14 Strength, $fc = fc_lower_bound = 16.00$ Existing material: Steel Strength, fs = 1.25*fsm New material of Primary Member: Steel = 555.56 Strength, fs = fs_lower_bound = 400.00 **Member's Properties** Total Height, Htot = 3000.00 Edges Width, Wedg = 250.00 Edges Height, Hedg = 600.00 Web Width, Wweb = 250.00 Cover Thickness, c = 25.00Element Length, L = 3000.00 **Primary Member** Smooth Bars **Ductile Steel** With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30**FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions. NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The wall member is modeled through an inelastic force-based frame element (infrmFB) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0027463	0.0027463
[rad]	Collapse Prevention	End	2	0.0149043	0.0149043
Shear Capacity [kN]	Immediate Occupancy	Start	3	1792.800	1792.800

Table 3.67. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 5.2

COMPUTER FILES

- ASCE_rcrws2.bpf
- Report_ASCE_rcrws2.pdf

EXAMPLE 5.3

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A wall section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u> Confidence Factor, Cf = 1.00

Materials' Properties

Concrete Elasticity, Ec = 23025.204 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material of Primary Member: Concrete Strength, fc = fcm = 16.00 Existing material of Primary Member: Steel Strength, fs = fsm = 420.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 525.00

Member's Properties

For Shear Capacity Calculations: Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 420.00

Total Height, Htot = 3000.00 Edges Width, Wedg = 250.00 Edges Height, Hedg = 600.00 Web Width, Wweb = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 **Primary Member Smooth Bars Ductile Steel** With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The wall member is modeled through an inelastic force-based frame element (infrmFB) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:
Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity [rad]	Operational Level Considering wall controlled by Shear. Final interstorey drift Capacity: δu,R	End	2	0.004	0.004
	Life Safety	Start	3	0.0097905	0.0097905
Shear Capacity [kN]	Life Safety	Start	3	1992.0	1992.0

Table 3.68. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 5.3

COMPUTER FILES

- ASCE_rcrws3.bpf
- Report_ASCE_rcrws3.pdf

EXAMPLE 5.4

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars Straight Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- FRP Wrapping
- New Material Sets type

DESCRIPTION

A wall section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.85

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material of Primary Member: Concrete Strength, fc = fcm = 25.00 Existing material of Primary Member: Steel Strength, fs = fsm = 500.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 625.00

Member's Properties

For Shear Capacity Calculations: Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 Consequently: Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00

Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

Total Height, Htot = 3000.00 Edges Width, Wedg = 250.00 Edges Height, Hedg = 600.00Web Width, Wweb = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations. bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The wall member is modeled through an inelastic force-based frame element (infrmFB) fully restrained at its support.

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0038354	0.0038354
[rad]	Collapse Prevention	Start	3	0.0168349	0.0168349
Shear Capacity [kN]	Immediate Occupancy	End	3	2.490	2.490

COMPUTER FILES

- ASCE_rcrws4.bpf
- Report_ASCE_rcrws4.pdf

EXAMPLE 5.5

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A wall section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material of Primary Member: Concrete Strength, fc = fcm = 33.00 Existing material of Primary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

Total Height, Htot = 3000.00 Edges Width, Wedg = 250.00 Edges Height, Hedg = 600.00 Web Width, Wweb = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The wall member is modeled through an inelastic force-based frame element (infrmFB) fully restrained at its support.

For Shear Capacity Calculations:

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.70. Comparison betwee	en SeismoBuild and hand-calc	culated results for EXAMPLE 5.5
-------------------------------	------------------------------	---------------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	2	0.0044627	0.0044627
[rad]	Life Safety	End	3	0.0089294	0.0089294
Shear Capacity [kN]	Operational Level	Start	2	508.053	508.053

COMPUTER FILES

- ASCE_rcrws5.bpf
- Report_ASCE_rcrws5.pdf

EXAMPLE 5.6

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars Without Lapping in the Vicinity of the End Regions
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type

DESCRIPTION

A wall section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

For Shear Capacity Calculations:

1, ASCE 41-17.

41-17

Member Shear Force is generally considered as

Force-Controlled Action according to Table C7-

Lower-bound strengths are used for Force-

Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00

Strength, fs = fs_lower_bound = 500.00

Controlled Actions according to 7.5.1.3, ASCE

Existing material of Secondary Member: Steel

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material of Primary Member: Concrete Strength, fc = fcm = 25.00 Existing material of Primary Member: Steel Strength, fs = fsm = 500.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14

Existing material: Steel Strength, fs = 1.25*fsm = 625.00

Member's Properties

Total Height, Htot = 3000.00 Edges Width, Wedg = 250.00 Edges Height, Hedg = 600.00 Web Width, Wweb = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The wall member is modeled through an inelastic force-based frame element (infrmFB) fully restrained at its support.

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0045470	0.0045470
[rad]	Collapse Prevention	Start	2	0.0165474	0.0165474
Shear Capacity [kN]	Immediate Occupancy	End	2	601.130	601.130

COMPUTER FILES

- ASCE_rcrws6.bpf
- Report_ASCE_rcrws6.pdf

EXAMPLE 5.7

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A wall section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material of Primary Member: Concrete Strength, fc = fcm = 16.00 Existing material of Primary Member: Steel Strength, fs = fsm = 400.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 500.00

Member's Properties

Total Height, Htot = 3000.00 Edges Width, Wedg = 250.00 Edges Height, Hedg = 600.00 Web Width, Wweb = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The wall member is modeled through an inelastic force-based frame element (infrmFB) fully restrained at its support.

For Shear Capacity Calculations:

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.72. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 5.7
--

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
	Operational Level	Start	3	0.0030522	0.0030522
Chord Rotation Capacity [rad]	Life Safety Considering wall controlled by Shear. Final interstorey drift Capacity: δu,R	End	2	0.015	0.015
Shear Capacity [kN]	Operational Level	Start	3	1467.9	1467.84

NOTE: The small difference between the Shear Capacity obtained from the Hand Calculations and SeismoBuild is due to the rounding of the shear capacity value exported to the Report.

COMPUTER FILES

- ASCE_rcrws7.bpf
- Report_ASCE_rcrws7.pdf

EXAMPLE 5.8

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A wall section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.85

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material of Primary Member: Concrete Strength, fc = fcm = 16.00 Existing material of Primary Member: Steel Strength, fs = fsm = 400.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 500.00

Member's Properties

Total Height, Htot = 3000.00 Edges Width, Wedg = 250.00 Edges Height, Hedg = 600.00Web Width, Wweb = 250.00Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00**FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01 Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1

For Shear Capacity Calculations:

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE

41-17 Existing material of Secondary Member:

Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The wall member is modeled through an inelastic force-based frame element (infrmFB) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Fable 3.73. Comparison betwe	een SeismoBuild and hand-calc	culated results for EXAMPLE 5.8
------------------------------	-------------------------------	---------------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0027713	0.0027713
[rad]	Collapse Prevention	Start	3	0.0138210	0.0138210
Shear Capacity [kN]	Collapse Prevention	End	3	1693.2	1693.2

COMPUTER FILES

- ASCE_rcrws8.bpf
- Report_ASCE_rcrws8.pdf

EXAMPLE 5.9

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A wall section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material of Primary Member: Concrete Strength, fc = fcm = 30.00 Existing material of Primary Member: Steel Strength, fs = fsm = 625.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 781.25

Member's Properties

Total Height, Htot = 3000.00 Edges Width, Wedg = 250.00 Edges Height, Hedg = 600.00 Web Width, Wweb = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The wall member is modeled through an inelastic force-based frame element (infrmFB) fully restrained at its support.

For Shear Capacity Calculations:

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 20.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.74. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 5.

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0027673	0.0027673
[rad]	Collapse Prevention	Start	2	0.0154053	0.0154053
Shear Capacity [kN]	Collapse Prevention	Start	2	242.034	242.034

COMPUTER FILES

- ASCE_rcrws9.bpf
- Report_ASCE_rcrws9.pdf

EXAMPLE 5.10

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type

DESCRIPTION

A wall section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.90

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material of Primary Member: Concrete Strength, fc = fcm = 25.00 Existing material of Primary Member: Steel Strength, fs = fsm = 500.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 625.00

Member's Properties

Total Height, Htot = 3000.00 Edges Width, Wedg = 250.00 Edges Height, Hedg = 600.00Web Width, Wweb = 250.00Cover Thickness, c = 25.00 Element Length, L = 3000.00 **Primary Member Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 **FRP Wrapping Data** Type: Carbon Dry properties (design values) Thickness, t = 1.00Tensile Strength, ffu = 840.00 Tensile Modulus, Ef = 82000.00 Elongation, efu = 0.009Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1

For Shear Capacity Calculations:

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The wall member is modeled through an inelastic force-based frame element (infrmFB) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.75. Comparison between	SeismoBuild and hand-calculated	results for EXAMPLE 5.10
--------------------------------	---------------------------------	--------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0030365	0.0030365
[rad]	Life Safety	End	2	0.0085470	0.0085470
Shear Capacity [kN]	Immediate Occupancy	Start	3	2490.0	2490.0

COMPUTER FILES

- ASCE_rcrws10.bpf
- Report_ASCE_rcrws10.pdf

EXAMPLE 5.11

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type

DESCRIPTION

A wall section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material of Primary Member: Concrete Strength, fc = fcm = 33.00 Existing material of Primary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

Total Height, Htot = 3000.00 Edges Width, Wedg = 250.00 Edges Height, Hedg = 600.00Web Width, Wweb = 250.00Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars **Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01 Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1

For Shear Capacity Calculations:

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE

Controlled Actions according to 7.5.1.3, ASCE 41-17 Existing material of Secondary Member:

Concrete Strength, $fc = fc_lower_bound = 25.00$ Existing material of Secondary Member: Steel Strength, $fs = fs_lower_bound = 500.00$

Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The wall member is modeled through an inelastic force-based frame element (infrmFB) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.76. Comparison between S	SeismoBuild and hand-calculated	results for EXAMPLE 5.11
----------------------------------	---------------------------------	--------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	2	0.0025917	0.0025917
[rad]	Life Safety	Start	3	0.0091870	0.0091870
Shear Capacity [kN]	Operational Level	End	2	385.904	385.903

NOTE: The small difference between the Shear Capacity obtained from the Hand Calculations and SeismoBuild is due to the rounding of the shear capacity value exported to the Report.

COMPUTER FILES

- ASCE_rcrws11.bpf
- Report_ASCE_rcrws11.pdf

EXAMPLE 5.12

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A wall section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

162 SeismoBuild Verification Report

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material of Primary Member: Concrete Strength, fc = fcm = 30.00 Existing material of Primary Member: Steel Strength, fs = fsm = 625.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 781.25

Member's Properties

Total Height, Htot = 3000.00 Edges Width, Wedg = 250.00 Edges Height, Hedg = 600.00 Web Width, Wweb = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping Data

For Shear Capacity Calculations:

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 20.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The wall member is modeled through an inelastic force-based frame element (infrmFB) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity [rad]	Immediate Occupancy Considering wall controlled by Shear. Final interstorey drift Capacity: δu,R	End	2	0.004	0.004
	Collapse Prevetion	Start	3	0.0169179	0.0169179
Shear Capacity [kN]	Immediate Occupancy	End	2	242.595	242.595

Fable 3.77. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 5	5.12
--	------

COMPUTER FILES

- ASCE_rcrws12.bpf
- Report_ASCE_rcrws12.pdf

EXAMPLE 5.13

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A wall section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The

employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

Units in N, mm

Knowledge Factor, KF = 0.85

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

Existing material of Primary Member: Concrete Strength, fc = fcm = 16.00 Existing material of Primary Member: Steel Strength, fs = fsm = 400.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 500.00

Member's Properties

Total Height, Htot = 3000.00

For Shear Capacity Calculations:

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Edges Width, Wedg = 250.00 Edges Height, Hedg = 600.00 Web Width, Wweb = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The wall member is modeled through an inelastic force-based frame element (infrmFB) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

 Table 3.78. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 5.13

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
	Operational Level	Start	3	0.0032804	0.0032804
Chord Rotation Capacity [rad]	Life Safety Considering wall controlled by Shear. Final interstorey drift Capacity: δu,R	Start	2	0.015	0.015
Shear Capacity [kN]	Life Safety	Start	2	177.167	177.167

COMPUTER FILES

- ASCE_rcrws13.bpf
- Report_ASCE_rcrws13.pdf

EXAMPLE 5.14

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A wall section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material of Primary Member: Concrete Strength, fc = fcm = 16.00 Existing material of Primary Member: Steel Strength, fs = fsm = 400.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 500.00

Member's Properties

Total Height, Htot = 3000.00 Edges Width, Wedg = 250.00 Edges Height, Hedg = 600.00Web Width, Wweb = 250.00Cover Thickness, c = 25.00 Element Length, L = 3000.00 **Primary Member Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00**FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01 Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1

For Shear Capacity Calculations:

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE

41-17 Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel

Strength, fs = fs_lower_bound = 400.00

Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The wall member is modeled through an inelastic force-based frame element (infrmFB) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.79. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 5.14

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
	Immediate Occupancy	End	2	0.0032597	0.0032597
Chord Rotation Capacity [rad]	Collapse Prevention Considering wall controlled by Shear. Final interstorey drift Capacity: δu,R	End	2	0.02	0.02
Shear Capacity [kN]	Immediate Occupancy	End	3	314.648	314.648

COMPUTER FILES

- ASCE_rcrws14.bpf
- Report_ASCE_rcrws14.pdf

EXAMPLES SET 6: BEAM SECTION

EXAMPLE 6.1

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- With detailing for earthquake resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

168 SeismoBuild Verification Report

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material of Primary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Primary Member: Steel Strength, fs = fsm = 444.4444 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 555.5556

Member's Properties

For Shear Capacity Calculations:

Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17.

Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17

Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Section Height, H = 400.00 Section Width, W = 300.00 Cover Thickness, c = 25.00 Element Length, L = 1850.00 Primary Member Ribbed Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.80. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 6.1

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0087273	0.0087273
[rad]	Life Safety	Start	2	0.0254565	0.0254565
Shear Capacity [kN]	Life Safety	Start	2	136.838	136.838

COMPUTER FILES

- ASCE_Beam1.bpf
- Report_ASCE_Beam1.pdf

EXAMPLE 6.2

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Units in N, mm

Knowledge Factor, KF = 0.85

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material of Primary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Primary Member: Steel Strength, fs = fsm = 444.4444 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 555.5556

Member's Properties

Section Height, H = 400.00 Section Width, W = 300.00 Cover Thickness, c = 25.00 Element Length, L = 1750.00 For Shear Capacity Calculations: Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

I ubic 5.01. Comparison between seismobulla ana nana carcalatea resalts for manin he ole
--

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0060259	0.0060259
[rad]	Collapse Prevention	End	2	0.0265346	0.0265346
Shear Capacity [kN]	Immediate Occupancy	Start	3	167.462	167.462

COMPUTER FILES

- ASCE_Beam2.bpf
- Report_ASCE_Beam2.pdf

EXAMPLE 6.3

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 23025.204 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material of Primary Member: Concrete Strength, fc = fcm = 24.00 Existing material of Primary Member: Steel Strength, fs = fsm = 525.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 656.25

Member's Properties

Section Height, H = 400.00 Section Width, W = 300.00 Cover Thickness, c = 25.00 Element Length, L = 1850.00 For Shear Capacity Calculations: Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 420.00

Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.82. Comparie	son between Seism	oBuild and hand-cal	lculated results for I	EXAMPLE 6.3
----------------------	-------------------	---------------------	------------------------	-------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	2	0.0073382	0.0073382
[rad]	Life Safety	Start	3	0.0240430	0.0240430
Shear Capacity [kN]	Life Safety	Start	3	203.706	203.706

COMPUTER FILES

- ASCE_Beam3.bpf
- Report_ASCE_Beam3.pdf

EXAMPLE 6.4

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.90

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material of Secondary Member: Concrete Strength, fc = fcm = 33.00 New material of Secondary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm

Member's Properties

= 694.45

For Shear Capacity Calculations: Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

Section Height, H = 400.00 Section Width, W = 300.00 Cover Thickness, c = 25.00 Element Length, L = 1850.00 Secondary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.83. Comparison bet	ween SeismoBuild and	d hand-calculated re	esults for EXAMPLE 6.4
----------------------------	----------------------	----------------------	------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0086865	0.0086865
[rad]	Collapse Prevention	Start	3	0.0336862	0.0336862
Shear Capacity [kN]	Collapse Prevention	Start	3	245.858	245.858

COMPUTER FILES

- ASCE_Beam4.bpf
- Report_ASCE_Beam4.pdf

EXAMPLE 6.5

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo=300.00
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material of Secondary Member: Concrete Strength, fc = fcm = 33.00 New material of Secondary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

Section Height, H = 400.00 Section Width, W = 300.00 Cover Thickness, c = 25.00 For Shear Capacity Calculations: Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

Element Length, L = 1850.00 Secondary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo=300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

	Table 3.84.	Comparison	between Seis	smoBuild and	d hand-calculated	d results for l	EXAMPLE 6.5
--	-------------	------------	--------------	--------------	-------------------	-----------------	-------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	2	0.0082791	0.0082791
[rad]	Life Safety	End	3	0.0225644	0.0225644
Shear Capacity [kN]	Life Safety	End	3	251.384	251.384

COMPUTER FILES

- ASCE_Beam5.bpf
- Report_ASCE_Beam5.pdf

EXAMPLE 6.6

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min=0.30
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material of Secondary Member: Concrete Strength, fc = fcm = 33.00 New material of Secondary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

Section Height, H = 400.00 Section Width, W = 300.00 Cover Thickness, c = 25.00 Element Length, L = 1892.749 For Shear Capacity Calculations: Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

Secondary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min=0.30 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.85. Comparison	between SeismoBuild	l and hand-calculated	results for EXAMPLE 6.6
------------------------	---------------------	-----------------------	-------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0063250	0.0063250
[rad]	Collapse Prevention	Start	2	0.0324517	0.0324517
Shear Capacity [kN]	Collapse Prevention	Start	2	171.048	171.048

COMPUTER FILES

- ASCE_Beam6.bpf
- Report_ASCE_Beam6.pdf

EXAMPLE 6.7

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars Straight Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min=0.30
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm

= 555.55

Member's Properties

Section Height, H = 400.00 Section Width, W = 300.00 Cover Thickness, c = 25.00 Element Length, L = 1850.00 For Shear Capacity Calculations: Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Secondary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min=0.30 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Fable 3.86. Comparison	ı between SeismoBuild	and hand-calculated	results for EXAMPLE 6.7
-------------------------------	-----------------------	---------------------	-------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0071211	0.0071211
[rad]	Life Safety	End	2	0.0205894	0.0205894
Shear Capacity [kN]	Operational Level	Start	3	196.446	196.446

COMPUTER FILES

- ASCE_Beam7.bpf
- Report_ASCE_Beam7.pdf

EXAMPLE 6.8

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.86

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm

= 555.55

Member's Properties

Section Height, H = 400.00 Section Width, W = 300.00 For Shear Capacity Calculations: Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Cover Thickness, c = 25.00 Element Length, L = 1850.00 Secondary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity [rad]	Immediate Occupancy	Start	2	0.0070961	0.0070961
	Collapse Prevention	End	3	0.0282576	0.0282576
Shear Capacity [kN]	Immediate Occupancy	Start	2	117.681	117.681

COMPUTER FILES

- ASCE_Beam8.bpf
- Report_ASCE_Beam8.pdf

EXAMPLE 6.9

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF =1.00

Materials' Properties

Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material of Primary Member: Concrete Strength, fc = fcm = 30.00 New material of Primary Member: Steel Strength, fs = fsm = 625.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm

Member's Properties

Primary Member

Section Height, H = 400.00 Section Width, W = 300.00 Cover Thickness, c = 25.00 Element Length, L = 1850.00

= 781.25

For Shear Capacity Calculations: Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.88. Con	nparison between	SeismoBuild a	and hand-calculated	results for EXAMPLE 6.9
-----------------	------------------	---------------	---------------------	-------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity [rad]	Operational Level	End	3	0.0069017	0.0069017
	Collapse Prevention	Start	2	0.0323829	0.0323829
Shear Capacity [kN]	Collapse Prevention	Start	2	162.940	162.940

COMPUTER FILES

- ASCE_Beam9.bpf
- Report_ASCE_Beam9.pdf

EXAMPLE 6.10

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min=0.30
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.90

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material of Primary Member

New material of Primary Member: Concrete Strength, fc = fcm = 33.00 New material of Primary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm

Existing material: Steel Strength, is = 1.25*fsm = 694.45

Member's Properties

Section Height, H = 400.00 Section Width, W = 300.00 Cover Thickness, c = 25.00 Element Length, L =1850.00 For Shear Capacity Calculations: Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

Primary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min=0.30 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.89. Com	narison between	SeismoBuild and	l hand-calculated	results for	EXAMPLE 6.10
rubic 5.0 % com	pui ison beeween	Seismobulla une	i nunu curculuteu	i counto ioi	

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity [rad]	Immediate Occupancy	Start	3	0.0070659	0.0070659
	Life Safety	End	2	0.0212687	0.0212687
Shear Capacity [kN]	Life Safety	End	2	171.048	171.048

COMPUTER FILES

- ASCE_Beam10.bpf
- Report_ASCE_Beam10.pdf

EXAMPLE 6.11

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material of Primary Member: Concrete

Strength, fc = fcm = 33.00 New material of Primary Member: Steel Strength, fs = fsm = 555.56 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm

= 694.45

Member's Properties

Section Height, H = 400.00 Section Width, W = 300.00 Cover Thickness, c = 25.00 Element Length, L = 1850.00 For Shear Capacity Calculations: Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

Secondary Member Smooth Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.90. Com	narison between	SeismoBuild an	d hand-calculated	results for	EXAMPLE 6.11
rabic 5.70. com	parison between	Scisillobullu all	u nanu carculateu	i counto ioi	L'ATHIT LL OILL

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity [rad]	Operational Level	End	2	0.0069238	0.0069238
	Life Safety	Start	3	0.0229500	0.0229500
Shear Capacity [kN]	Operational Level	End	2	171.048	171.048

COMPUTER FILES

- ASCE_Beam11.bpf
- Report_ASCE_Beam11.pdf

EXAMPLE 6.12

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length(lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type

DESCRIPTION

A beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material of Primary Member: Concrete Strength, fc = fcm = 30.00 New material of Primary Member: Steel Strength, fs = fsm = 625.00 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm = 781.25

Member's Properties

Section Height, H = 40.00Section Width, W = 300.00Cover Thickness, c = 25.00Element Length, L = 1850.00 For Shear Capacity Calculations: Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.91. Com	narison hetween	SeismoBuild and	hand-calculated	results for	EXAMPLE 6.12
rable 5.71. com	parison between	Seisinobunu anu	nanu-carculateu	results for	CARTER OF TE

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity [rad]	Immediate Occupancy	End	2	0.0076696	0.0076696
	Collapse Prevention	Start	3	0.0343357	0.0343357
Shear Capacity [kN]	Immediate Occupancy	End	2	162.940	162.940

COMPUTER FILES

- ASCE_Beam12.bpf
- Report_ASCE_Beam12.pdf

EXAMPLE 6.13

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.75

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm

= 555.55

Member's Properties

For Shear Capacity Calculations: Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00

Section Height, H = 400.00 Section Width, W = 300.00 Cover Thickness, c = 25.00 Element Length, L = 1850.00 Secondary Member Smooth Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.92. Comparison between	SeismoBuild and hand-calcul	ated results for EXAMPLE 6.13
--------------------------------	-----------------------------	-------------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0065458	0.0065458
[rad]	Life Safety	Start	2	0.0182008	0.0182008
Shear Capacity [kN]	Life Safety	Start	2	102.629	102.629

COMPUTER FILES

- ASCE_Beam13.bpf
- Report_ASCE_Beam13.pdf

EXAMPLE 6.14

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- Existing Material Sets type

DESCRIPTION

A beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material of Secondary Member: Concrete Strength, fc = fcm = 20.00 Existing material of Secondary Member: Steel Strength, fs = fsm = 444.44 Note: Especially for the calculation of moment strengths, the above steel re-bar strengths are multiplied by 1.25 according to R18.6.5, ACI 318-14 Existing material: Steel Strength, fs = 1.25*fsm

= 555.55

Member's Properties

Section Height, H = 400.00 Section Width, W = 300.00 For Shear Capacity Calculations: Member Shear Force is generally considered as Force-Controlled Action according to Table C7-1, ASCE 41-17. Lower-bound strengths are used for Force-Controlled Actions according to 7.5.1.3, ASCE 41-17 New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00

Cover Thickness, c = 25.00 Element Length, L = 1850.00 Primary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.93. Com	narison between	SeismoBuild an	d hand-calculated	results for I	EXAMPLE 6.14
1 abie 5.75. com	parison between	Seisino Dunu an	u nanu-carculateu	i i couito ioi i	SVULLE OT A

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0078447	0.0078447
[rad]	Collapse Prevention	End	2	0.0318630	0.0318630
Shear Capacity [kN]	Immediate Occupancy	End	3	200.646	200.646

COMPUTER FILES

- ASCE_Beam14.bpf
- Report_ASCE_Beam14.pdf

EXAMPLES SET 7: JACKETED RECTANGULAR COLUMN SECTION

EXAMPLE 7.1

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping Data
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Knowledge Factor, KF = 1.00

Materials' Properties

Units in N, mm

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.5556 New material: Steel Strength, fs = 1.25*fsm = 694.4444

Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations:</u> Existing material: Concrete Strength, fc = fcm = 20.00 Existing material: Steel Strength, fs = fsm = 444.4444 Existing material: Steel Strength, fs = 1.25*fsm = 555.5556

Member's Properties

External Height, H = 400.00 External Width, W = 00.00 Internal Height, H = 200.00 Internal Width, W = 200.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Ribbed Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

For Shear Capacity Calculations:

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: Existing material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.94. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 7.1	d hand-calculated results for EXAMPLE 7.1
--	---

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity [rad]	Operational Level	End	3	0.0056647	0.0056647
	Life Safety	Start	2	0.0395104	0.0395104
Shear Capacity [kN]	Operational Level	End	3	404.607	404.607

COMPUTER FILES

- ASCE_rcjrs1.bpf
- Report_ASCE_rcjrs1.pdf

EXAMPLE 7.2

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lb/lb,min = 0.30
- FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.85

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.5556 New material: Steel Strength, fs = 1.25*fsm = 694.4444

Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: Existing material: Concrete Strength, fc = fcm = 20.00 Existing material: Steel Strength, fs = fsm = 444.4444 Existing material: Steel Strength, fs = 1.25*fsm = 555.5556

Member's Properties

External Height, H = 400.00 External Width, W = 400.00 Internal Height, H = 200.00 Internal Width, W = 200.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lb/lb,min = 0.30 FRP Wrapping Data

For Shear Capacity Calculations:

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: Existing material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00 Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00Tensile Modulus, Ef = 64828.00Elongation, efu = 0.01Number of directions, NoDir = 1Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.95.	Comparison	between S	SeismoBuild	and hand-	calculated	results for	EXAMPLE 7.2
	r						

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0060404	0.0060404
[rad]	Collapse Prevention	End	2	0.0540193	0.0540193
Shear Capacity [kN]	Immediate Occupancy	Start	3	475.023	475.023

COMPUTER FILES

- ASCE_rcjrs2.bpf
- Report_ASCE_rcjrs2.pdf

EXAMPLE 7.3

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1
- FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Jacket:

Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm = 781.25 Existing Column: Concrete Elasticity, Ec = 28781.504

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 37.50 Existing material: Steel Strength, fs = fsm = 625.00 Existing material: Steel Strength, fs = 1.25*fsm = 781.25

Member's Properties

External Height, H = 400.00 External Width, W = 400.00 Internal Height, H = 200.00 For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: Existing material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 Existing material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00 Internal Width, W = 200.00 Cover Thickness, c = 25.00Element Length, L = 3000.00 **Primary Member** Smooth Bars **Ductile Steel** With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) **FRP Wrapping** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus. Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.964. Comparison betw	veen SeismoBuild and h	and-calculated result	s for EXAMPLE 7.3

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	2	0.0125496	0.0125496
[rad]	Life Safety	Start	3	0.0521093	0.0521093
Shear Capacity [kN]	Operational Level	End	2	540.153	540.153

COMPUTER FILES

- ASCE_rcjrs3.bpf
- Report_ASCE_rcjrs3.pdf

EXAMPLE 7.4

SUCCINCT DATA

• Secondary Member

- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.80

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations:

Strength, $fc = fc_lower_bound = 25.00$

New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

New material of Secondary Member: Concrete

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 555.56 Existing material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

External Height, H = 400.00 External Width, W = 400.00 Internal Height, H = 200.00 Internal Width, W = 200.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Гable 3.97. Com	parison between	SeismoBuild a	and hand-calculate	ed results for I	EXAMPLE 7.4

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0063065	0.0063065
[rad]	Collapse Prevention	Start	3	0.0635230	0.0635230

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Shear Capacity [kN]	Immediate Occupancy	End	3	585.778	585.778

COMPUTER FILES

- ASCE_rcjrs4.bpf
- Report_ASCE_rcjrs4.pdf

EXAMPLE 7.5

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u> Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00 For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 555.56 Existing material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

External Height, H = 400.00External Width, W = 400.00Internal Height, H = 200.00Internal Width, W = 200.00Cover Thickness, c = 25.00Element Length, L = 3000.00Secondary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Гable 3.98. Comparison	between SeismoBuild	l and hand-calculated	results for EXAMPLE 7.5
------------------------	---------------------	-----------------------	-------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	2	0.0036391	0.0036391
[rad]	Life Safety	Start	3	0.0356083	0.0356083

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Shear Capacity [kN]	Operational Level	Start	2	331.644	331.644

COMPUTER FILES

- ASCE_rcjrs5.bpf
- Report_ASCE_rcjrs5.pdf

EXAMPLE 7.6

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00 For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 555.56 Existing material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

External Height, H = 400.00 External Width, W = 750.00 Internal Height, H = 200.00 Internal Width, W = 550.00 Cover Thickness, c = 25.00Element Length, L = 3000.00 Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus. Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

RESULTS COMPARISON

The most significant results are compared in the table below:

Fahle 3 99 Comparison between	SeismoBuild and hand	d-calculated results for	r EXAMPLE 7 6
able 5.99. Comparison between	Seismobullu allu llallu	a-calculated results in	I EAAMIFLE 7.0

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0020344	0.0020344
[rad]	Collapse Prevention	Start	2	0.0349543	0.0349543
Shear Capacity [kN]	Collapse Prevention	Start	2	948.849	948.849

COMPUTER FILES

- ASCE_rcjrs6.bpf
- Report_ASCE_rcjrs6.pdf

EXAMPLE 7.7

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 13
- Longitudinal Bars Straight Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

Units in N, mm

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 20.00 Existing material: Steel Strength, fs = fsm = 444.44 Existing material: Steel Strength, fs = 1.25*fsm =555.55

Member's Properties

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

External Height, H = 400.00 External Width, W = 750.00 Internal Height, H = 200.00 Internal Width, W = 550.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0026471	0.0026471
[rad]	Life Safety	End	2	0.0179060	0.0179060
Shear Capacity [kN]	Operational Level	Start	3	534.028	534.028

Table 3.100. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 7.7

COMPUTER FILES

- ASCE_rcjrs7.bpf
- Report_ASCE_rcjrs7.pdf

EXAMPLE 7.8

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- FRP Wrapping Data
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u> Knowledge Factor, KF = 0.80

Materials' Properties

<u> Iacket:</u>

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 <u>Existing Column:</u> Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

Existing material: Concrete Strength, fc = fcm = 20.00 Existing material: Steel Strength, fs = fsm = 444.44 Existing material: Steel Strength, fs = 1.25*fsm =555.55

Member's Properties

Secondary Member Ribbed Bars Ductile Steel

External Height, H = 400.00External Width, W = 400.00Internal Height, H = 200.00Internal Width, W = 200.00Cover Thickness, c = 25.00Element Length, L = 3000.00 <u>For Shear Capacity Calculations</u>: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00 FRP Wrapping Data Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01 Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1 Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	2	0.0033230	0.0033230
[rad]	Collapse Prevention	End	3	0.0342643	0.0342643
Shear Capacity [kN]	Immediate Occupancy	Start	2	385.806	385.806

COMPUTER FILES

- ASCE_rcjrs8.bpf
- Report_ASCE_rcjrs8.pdf

EXAMPLE 7.9

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

Units in N, mm

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm = 781.25 <u>Existing Column:</u> Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 30.00 Existing material: Steel Strength, fs = fsm = 625.00 Existing material: Steel Strength, fs = 1.25*fsm =781.25

Member's Properties

External Height, H = 400.00External Width, W = 400.00Internal Height, H = 200.00Internal Width, W = 200.00Cover Thickness, c = 25.00Element Length, L = 3000.00Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00No FRP Wrapping

For Shear Capacity Calculations:

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.102. Comparison between SeismoBuild and hand-calculated results for EXAMPLE	7.9
---	-----

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0004530	0.0004530
[rad]	Collapse Prevention	Start	2	0.0382066	0.0382066
Shear Capacity [kN]	Operational Level	End	3	464.717	464.717

COMPUTER FILES

- ASCE_rcjrs9.bpf
- Report_ASCE_rcjrs9.pdf

EXAMPLE 7.10

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.90

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444

Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 <u>Existing Column:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm =

33.00 Existing material: Steel Strength, fs = fsm = 555.56 Existing material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

External Height, H = 400.00 External Width, W = 750.00 Internal Height, H = 200.00 Internal Width, W = 550.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 FRP Wrapping Data Type: Carbon Dry properties (design values)

For Shear Capacity Calculations:

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00 Thickness, t = 1.00 Tensile Strength, ffu = 840.00 Tensile Modulus, Ef = 82000.00 Elongation, efu = 0.009 Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1 Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity [rad]	Immediate Occupancy	Start	3	0.002706	0.002706
	Life Safety	End	2	0.0274056	0.0274056
Shear Capacity [kN]	Immediate Occupancy	Start	3	776.632	776.632

COMPUTER FILES

- ASCE_rcjrs10.bpf
- Report_ASCE_rcjrs10.pdf

EXAMPLE 7.11

SUCCINCT DATA

- Secondary Member
- SmoothBars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.
The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 555.56 Existing material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

External Height, H = 400.00External Width, W = 750.00Internal Height, H = 200.00Internal Width, W = 550.00Cover Thickness, c = 25.00Element Length, L = 3000.00Secondary Member For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

218 SeismoBuild Verification Report

Smooth Bars **Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Fable 3.104. Comparison between	SeismoBuild and hand-calculated results for EXAMPLE 7.11
---------------------------------	--

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity Operational Level		End	2	0.0024982	0.0024982
[rad]	Life Safety	Start	3	0.0332822	0.0332822
Shear Capacity [kN] Operational Level		End	2	1100.268	1100.300

COMPUTER FILES

- ASCE_rcjrs11.bpf
- Report_ASCE_rcjrs11.pdf

EXAMPLE 7.12

SUCCINCT DATA

- Primary Member
- SmoothBars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections

- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

Units in N, mm

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u>

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 555.56 Existing material: Steel Strength, fs = 1.25*fsm =694.45 For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

Member's Properties

External Height, H = 400.00 External Width, W = 750.00 Internal Height, H = 200.00 Internal Width, W = 550.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Fable 3.105. Compariso	n between SeismoBuild	l and hand-calculated	d results for EXAMPLE 7.12
------------------------	-----------------------	-----------------------	----------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0081964	0.0081964
[rad]	Collapse Prevention	Start	3	0.0508905	0.0508905
Shear Capacity [kN] Collapse Prevention		Start	3	554.150	554.150

COMPUTER FILES

- ASCE_rcjrs12.bpf
- Report_ASCE_rcjrs12.pdf

EXAMPLE 7.13

SUCCINCT DATA

- Secondary Member
- SmoothBars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars Without Lapping in the Vicinity of the End Regions
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping

• New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.85

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm = 781.25 <u>Existing Column:</u> Concrete Elasticity, Ec = 23025.204 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 24.00 Existing material: Steel Strength, fs = fsm = 500.00 Existing material: Steel Strength, fs = 1.25*fsm =625.00

Member's Properties

External Height, H = 400.00 External Width, W = 750.00 For Shear Capacity Calculations:

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

<u>For Shear Capacity Calculations</u>: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00 Internal Height, H = 200.00 Internal Width, W = 550.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State		Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0082194	0.0082194
[rad]	Life Safety	Start	2	0.0279051	0.0279051
Shear Capacity [kN]	Life Safety	Start	2	571.862	571.862

Table 3.106. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 7.13

COMPUTER FILES

- ASCE_rcjrs13.bpf
- Report_ASCE_rcjrs13.pdf

EXAMPLE 7.14

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.85

Materials' Properties

Jacket:

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 20.00 Existing material: Steel Strength, fs = fsm = 444.44 Existing material: Steel Strength, fs = 1.25*fsm =555.55

Member's Properties

External Height, H = 450.00 External Width, W = 450.00 Internal Height, H = 250.00 For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00 Internal Width, W = 250.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00**Primary Member Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00**FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0005525	0.0005525
[rad]	Collapse Prevention	End	2	0.0355864	0.0355864
Shear Capacity [kN] Immediate Occupancy		End	3	594.192	594.192

COMPUTER FILES

- ASCE_rcjrs14.bpf
- Report_ASCE_rcjrs14.pdf

EXAMPLE 7.15

SUCCINCT DATA

- Secondary Member
- SmoothBars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped in the Vicinity of the End Regions
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm = 781.25 Existing Column: Concrete Elasticity, Ec = 23025.204 Steel Elasticity, Es = 200000.00 <u>For Shear Capacity Calculations</u>: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00 For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 500.00 Existing material: Steel Strength, fs = fsm =555.56

Member's Properties

External Height, H = 200.00 External Width, W = 2000.00 Internal Height, H = 100.00 Internal Width, W = 100.00 Cover Thickness, c = 10.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Fable 3.108.	Comparison I	between Seism	oBuild and l	hand-calculated	d results for	EXAMPLE 7	.15
	comparison .	been een beibn	obuna una	inalita cultulates	a rebuild for	DIM MOIT DD /	

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	2	0.0430422	0.0430422
[rad]	Life Safety	Start	3	0.1251332	0.1251332
Shear Capacity [kN] Life Safety		End	3	177.628	177.628

COMPUTER FILES

- ASCE_rcjrs15.bpf
- Report_ASCE_rcjrs15.pdf

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

EXAMPLE 7.16

SUCCINCT DATA

- Secondary Member
- SmoothBars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped in the Vicinity of the End Regions
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed rectangular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

Units in N, mm

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm = 781.25 Existing Column: Concrete Elasticity, Ec = 23025.204 Steel Elasticity, Es = 200000.00 For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00 For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 500.00 Existing material: Steel Strength, fs = fsm =555.56

Member's Properties

External Height, H = 200.00 External Width, W = 2000.00 Internal Height, H = 100.00 Internal Width, W = 100.00 Cover Thickness, c = 15.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Гable 3.109.	Comparison	between Sei	smoBuild an	d hand-calcula	ated results for	r EXAMPLE 7	7.16
--------------	------------	-------------	-------------	----------------	------------------	-------------	------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	2	0.0198895	0.0198895
[rad]	Life Safety	Start	3	0.0788670	0.0788670
Shear Capacity [kN] Life Safety		End	3	235.803	235.803

COMPUTER FILES

- ASCE_rcjrs16.bpf
- Report_ASCE_rcjrs16.pdf

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

EXAMPLES SET 8: JACKETED L-SHAPED COLUMN SECTION

EXAMPLE 8.1

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 For Shear Capacity Calculations:

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00 Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: Existing material: Concrete Strength, fc = fcm = 20.00 Existing material: Steel Strength, fs = fsm = 444.44 Existing material: Steel Strength, fs = 1.25*fsm =555.55

Member's Properties

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00

Max Height, Hmax = 750.00 Min Height, Hmin = 400.00 Max Width, Wmax = 750.00 Min Width, Wmin = 400.00 Jacket Thickness, tj = 100.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Ribbed Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.110. Comparison between	SeismoBuild and hand	l-calculated results for	EXAMPLE 8.1
---------------------------------	----------------------	--------------------------	-------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0026579	0.0026579
[rad]	Life Safety	Start	2	0.0365177	0.0365177
Shear Capacity [kN]	Life Safety	Start	2	875.821	875.821

COMPUTER FILES

ASCE_rcjlcs1.bpf

Report_ASCE_rcjlcs1.pdf

EXAMPLE 8.2

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.80

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56

New material: Steel Strength, fs = 1.25*fsm = 694.45

For Shear Capacity Calculations:

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00 Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: Existing material: Concrete Strength, fc = fcm = 20.00 Existing material: Steel Strength, fs = fsm = 444.44 Existing material: Steel Strength, fs = 1.25*fsm =555.55

Member's Properties

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00

Max Height, Hmax = 750.00 Min Height, Hmin = 400.00Max Width, Wmax = 750.00 Min Width, Wmin = 400.00Jacket Thickness, tj = 100.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 **Primary Member** Smooth Bars **Ductile Steel** With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0019368	0.0019368
[rad]	Collapse Prevention	End	2	0.0485998	0.0485998
Shear Capacity [kN]	Immediate Occupancy	Start	3	720.058	720.058

Table 3.111. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 8.2

COMPUTER FILES

- ASCE_rcjlcs2.bpf
- Report_ASCE_rcjlcs2.pdf

EXAMPLE 8.3

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u> Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm = 781.25 <u>Existing Column</u>: Concrete Elasticity, Ec = 23025.204 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 24.00 Existing material: Steel Strength, fs = fsm = 525.00 Existing material: Steel Strength, fs = 1.25*fsm =656.25

Member's Properties

Max Height, Hmax = 750.00 Min Height, Hmin = 400.00 Max Width, Wmax = 750.00 Min Width, Wmin = 400.00 Jacket Thickness, tj = 100.00 <u>For Shear Capacity Calculations</u>: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 420.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

Cover Thickness, c = 25.00Element Length, L = 3000.00 **Primary Member** Smooth Bars **Ductile Steel** With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

 Table 3.112. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 8.3

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	2	0.0033335	0.0033335
[rad]	Life Safety	Start	3	0.0425475	0.0425475
Shear Capacity [kN]	Operational Level	End	2	943.739	943.739

COMPUTER FILES

- ASCE_rcjlcs3.bpf
- Report_ASCE_rcjlcs3.pdf

EXAMPLE 8.4

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.90

Materials' Properties

<u>Jacket:</u>

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 <u>Existing Column:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: Existing material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 555.56 Existing material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

Max Height, Hmax = 750.00 Min Height, Hmin = 400.00 Max Width, Wmax = 750.00 Min Width, Wmin = 400.00 Jacket Thickness, tj = 100.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) FRP Wrapping Data Type: Carbon

For Shear Capacity Calculations:

New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01 Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1 Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.113. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 8.4

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0030672	0.0030672
[rad]	Collapse Prevention	Start	3	0.0547348	0.0547348
Shear Capacity [kN]	Collapse Prevention	Start	3	1100.9	1100.86

NOTE: The small difference in the Shear Capacity values is due to the rounding of the shear capacity value exported to the Report.

COMPUTER FILES

- ASCE_rcjlcs4.bpf
- Report_ASCE_rcjlcs4.pdf

EXAMPLE 8.5

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00.
- No FRP Wrapping

• New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

Units in N, mm

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 <u>Existing Column:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 555.56 Existing material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

Max Height, Hmax = 750.00 Min Height, Hmin = 400.00 For Shear Capacity Calculations:

New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations:

New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 Max Width, Wmax = 750.00 Min Width, Wmin = 400.00 Jacket Thickness, tj = 100.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.114. Comparison between	SeismoBuild and hand-calculat	ed results for EXAMPLE 8.5
---------------------------------	-------------------------------	----------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	2	0.001521	0.001521
[rad]	Life Safety	End	3	0.0280248	0.0280248
Shear Capacity [kN]	Operational Level	Start	2	949.076	949.076

COMPUTER FILES

- ASCE_rcjlcs5.bpf
- Report_ASCE_rcjlcs5.pdf

EXAMPLE 8.6

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- No FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Jacket:

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 Existing Column: Concrete Elasticity, Ec = 26999.444

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 555.56 Existing material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

Max Height, Hmax = 600.00 Min Height, Hmin = 400.00 Max Width, Wmax = 700.00 For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 Min Width, Wmin = 400.00 Jacket Thickness, tj = 100.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 **FRP** Wrapping Data Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01 Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

,

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.115. Comparison	n between SeismoBuild	l and hand-calculated	results for EXAMPLE 8.6
-------------------------	-----------------------	-----------------------	-------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity [rad]	Immediate Occupancy	End	2	0.0013132	0.0013132
	Collapse Prevention	Start	2	0.0631083	0.0631083
Shear Capacity [kN]	Collapse Prevention	Start	2	885.527	885.527

COMPUTER FILES

- ASCE_rcjlcs6.bpf
- Report_ASCE_rcjlcs6.pdf

EXAMPLE 8.7

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00 <u>For Shear Capacity Calculations</u>: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 20.00 Existing material: Steel Strength, fs = fsm = 444.44 Existing material: Steel Strength, fs = 1.25*fsm =555.5556

Member's Properties

Max Height, Hmax = 750.00 Min Height, Hmin = 400.00 Max Width, Wmax = 750.00 Min Width, Wmin = 400.00 Jacket Thickness, tj = 100.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 No FRP Wrapping Data

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	2	0.0017680	0.0017680
[rad]	Collapse Prevention	End	3	0.0392274	0.0392274
Shear Capacity [kN]	Immediate Occupancy	Start	2	876.340	876.340

Table 3.116. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 8.7

COMPUTER FILES

- ASCE_rcjlcs7.bpf
- Report_ASCE_rcjlcs7.pdf

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

EXAMPLE 8.8

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.85

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00 <u>For Shear Capacity Calculations</u>: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations:

Strength, fc = fc_lower_bound = 16.00

New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

New material of Secondary Member: Concrete

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 20.00 Existing material: Steel Strength, fs = fsm = 444.44 Existing material: Steel Strength, fs = 1.25*fsm =555.5556

Member's Properties

Max Height, Hmax = 750.00 Min Height, Hmin = 400.00 Max Width, Wmax = 750.00 Min Width, Wmin = 400.00 Jacket Thickness, tj = 100.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00FRP Wrapping Data Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0024791	0.0024791
[rad]	Life Safety	End	2	0.0262696	0.0262696
Shear Capacity [kN]	Operational Level	Start	3	765.236	765.236

Table 3.117. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 8.8

COMPUTER FILES

- ASCE_rcjlcs8.bpf
- Report_ASCE_rcjlcs8.pdf

EXAMPLE 8.9

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u> Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm = 781.25 Existing Column: Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 30.00 Existing material: Steel Strength, fs = fsm = 625.00 Existing material: Steel Strength, fs = 1.25*fsm =781.25

Member's Properties

Max Height, Hmax = 750.00

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

Min Height, Hmin = 400.00 Max Width, Wmax = 750.00 Min Width, Wmin = 400.00 Jacket Thickness, tj = 100.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0001971	0.0001971
[rad]	Collapse Prevention	Start	2	0.0403885	0.0403885
Shear Capacity [kN]	Collapse Prevention	Start	2	848.936	848.936

Table 3.118. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 8.9

COMPUTER FILES

- ASCE_rcjlcs9.bpf
- Report_ASCE_rcjlcs9.pdf

EXAMPLE 8.10

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u> Knowledge Factor, KF = 0,87

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444

Steel Elasticity, Es = 20000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 <u>Existing Column:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 555.56 Existing material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

Primary Member Ribbed Bars Ductile Steel

FRP Wrapping Data Type: Carbon

Thickness, t = 1.00

Elongation, efu = 0.009

Dry properties (design values)

Tensile Strength, ffu = 840.00 Tensile Modulus, Ef = 82000.00

Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1

Radius of rounding corners, R = 40.00

Max Height, Hmax = 750.00 Min Height, Hmin = 400.00 Max Width, Wmax = 750.00 Min Width, Wmin = 400.00 Jacket Thickness, tj = 100.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 <u>For Shear Capacity Calculations</u>: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)

Longitudinal Bars With Ends Lapped Starting at the End Sections

Inadequate Lap Length with lo/lou,min = 0.30

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.119. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 8.10

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.002484	0.002484
[rad]	Life Safety	End	2	0.0454431	0.0454431
Shear Capacity [kN]	Immediate Occupancy	Start	3	948.969	948.969

COMPUTER FILES

- ASCE_rcjlcs10.bpf
- Report_ASCE_rcjlcs10.pdf

EXAMPLE 8.11

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u>

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 <u>Existing Column:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 555.56 Existing material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

Max Height, Hmax = 750.00 Min Height, Hmin = 400.00 Max Width, Wmax = 750.00 Min Width, Wmin = 400.00 Jacket Thickness, tj = 100.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 FRP Wrapping Data Type: Carbon

For Shear Capacity Calculations:

New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01 Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1 Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.120. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 8.11

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	2	0.0003981	0.0003981
[rad]	Life Safety	Start	3	0.0326730	0.0326730
Shear Capacity [kN]	Life Safety	Start	2	948.974	948.974

COMPUTER FILES

- ASCE_rcjlcs11.bpf
- Report_ASCE_rcjlcs11.pdf

EXAMPLE 8.12

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.
The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00

New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 555.56 Existing material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

Max Height, Hmax = 750.00 Min Height, Hmin = 400.00 Max Width, Wmax = 750.00 Min Width, Wmin = 400.00 Jacket Thickness, tj = 100.00 Cover Thickness, c = 25.00 For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations:

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping Data

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

	Table 3.121. Comparison betwe	en SeismoBuild and hand-	calculated results for EXAMPLE 8.12
--	-------------------------------	--------------------------	-------------------------------------

Check Limit State		Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0031475	0.0031475
[rad]	Collapse Prevention	Start	3	0.0495845	0.0495845
Shear Capacity [kN]	Collapse Prevention	Start	3	948.970	948.970

COMPUTER FILES

- ASCE_rcjlcs12.bpf
- Report_ASCE_rcjlcs12.pdf

EXAMPLE 8.13

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.90

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 625.00

New material: Steel Strength, fs = 1.25*fsm = 781.25

Existing Column: Concrete Elasticity, Ec =19940.411 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 18.00 Existing material: Steel Strength, fs = fsm = 500.00 Existing material: Steel Strength, fs = 1.25*fsm =625.00

Member's Properties

Max Height, Hmax = 750.00 Min Height, Hmin = 400.00 Max Width, Wmax = 750.00 Min Width, Wmin = 400.00 Jacket Thickness, tj = 100.00 Cover Thickness, c = 25.00 For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations:

New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 12.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135° Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.006095	0.006095
[rad]	Life Safety	Start	2	0.0349844	0.0349844
Shear Capacity [kN]	Life Safety	Start	2	698.851	698.851

COMPUTER FILES

- ASCE_rcjlcs13.bpf
- Report_ASCE_rcjlcs13.pdf

EXAMPLE 8.14

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.90

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56

New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 20.00 Existing material: Steel Strength, fs = fsm = 444.44 Existing material: Steel Strength, fs = 1.25*fsm =555.55

Member's Properties

Max Height, Hmax = 750.00 Min Height, Hmin = 400.00 Max Width, Wmax = 750.00 Min Width, Wmin = 400.00 Jacket Thickness, tj = 100.00 Cover Thickness, c = 25.00 For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations:

New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Element Length, L = 3000.00 **Primary Member Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135° Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00**FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions. NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.123. Comparison between	SeismoBuild and hand-calculate	d results for EXAMPLE 8.14
---------------------------------	--------------------------------	----------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0002558	0.0002558
[rad]	Collapse Prevention	End	2	0.0314501	0.0314501
Shear Capacity [kN]	Immediate Occupancy	End	3	684.441	684.441

COMPUTER FILES

- ASCE_rcjlcs14.bpf
- Report_ASCE_rcjlcs14.pdf

EXAMPLE 8.15

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel

- Without Detailing for Earthquake Resistance (including stirrups not closed at 135
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

781.25

Knowledge Factor, KF = 0.90

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 19940.411 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm =

Existing Column: Concrete Elasticity, Ec =19940.411 Steel Elasticity, Es = 200000.00 For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 18.00 Existing material: Steel Strength, fs = fsm = 500.00 Existing material: Steel Strength, fs = 1.25*fsm =625.00

Member's Properties

Max Height, Hmax = 400.00 Min Height, Hmin = 200.00 Max Width, Wmax = 400.00 Min Width, Wmin = 200.00 Jacket Thickness, tj = 50.00 Cover Thickness, c = 15.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135° Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Fable 3.124. Comparison between S	SeismoBuild and hand-calculated	results for EXAMPLE 8.15
-----------------------------------	---------------------------------	--------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0378413	0.0378413
[rad]	Life Safety	Start	2	0.0372130	0.0372130
Shear Capacity [kN]	Life Safety	Start	2	267.030	267.030

COMPUTER FILES

- ASCE_rcjlcs15.bpf
- Report_ASCE_rcjlcs15.pdf

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 12.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

EXAMPLE 8.16

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed L-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.90

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 19940.411 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm = 781.25

Existing Column: Concrete Elasticity, Ec =19940.411 Steel Elasticity, Es = 200000.00 <u>For Shear Capacity Calculations</u>: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 18.00 Existing material: Steel Strength, fs = fsm = 500.00 Existing material: Steel Strength, fs = 1.25*fsm =625.00

Member's Properties

Max Height, Hmax = 400.00 Min Height, Hmin = 200.00 Max Width, Wmax = 400.00 Min Width, Wmin = 200.00 Jacket Thickness, tj = 50.00 Cover Thickness, c = 15.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135° Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Fable 3.125. Compariso	n between SeismoBuild	l and hand-calculated	results for EXAMPLE 8.16
------------------------	-----------------------	-----------------------	--------------------------

Check	Limit State	it State Edge Local Axis SeismoBuild 2018		Hand calculations	
Chord Rotation Capacity	Operational Level	Start	3	0.0131113	0.0131114
[rad]	Life Safety	Start	2	0.0380477	0.0380491
Shear Capacity [kN]	Life Safety	Start	2	258.166	258.165

NOTE: The small difference between the Chord Rotation Capacity obtained from the Hand Calculations and SeismoBuild is due to the rounding of the shear capacity value exported to the Report.

<u>For Shear Capacity Calculations</u>: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 12.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

COMPUTER FILES

- ASCE_rcjlcs16.bpf
- Report_ASCE_rcjlcs16.pdf

EXAMPLES SET 9: JACKETED T-SHAPED COLUMN SECTION

EXAMPLE 9.1

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars Straight Ends Lapped Starting at the
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00 For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56

New material: Steel Strength, fs = 1.25*fsm = 694.4444

Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 20.00 Existing material: Steel Strength, fs = fsm = 444.44 Existing material: Steel Strength, fs = 1.25*fsm =555.5556

Member's Properties

Primary Member Ribbed Bars Ductile Steel

No FRP Wrapping

Max Height, $H_{max} = 750.00$ Min Width, $H_{min} = 450.00$ Max Width, $W_{max} = 950.00$ Min Width, $W_{min} = 450.00$ Eccentricity, $E_{cc} = 250.00$ Jacket Thickness, $t_i = 100.00$ Cover Thickness, c = 25.00 Element Length, L = 3000.00

With Detailing for Earthquake Resistance (including stirrups closed at 135°)

Longitudinal Bars With Ends Lapped Starting at the End Sections

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, $fc = fc_lower_bound = 25.00$ New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs lower bound = 400.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the Detailed Calculations (Annex) tab of the Print-out Options module.

MODELLING AND LOADING

Adequate Lap Length (lo/lou,min>=1)

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0028242	0.0028242
[rad]	Life Safety	Start	2	0.0354310	0.0354310
Shear Capacity [kN]	Operational Level	End	3	1130.1	1130.060

Table 3.126. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 9.1

NOTE: The small difference between the Shear Capacity obtained from the Hand Calculations and SeismoBuild is due to the rounding of the shear capacity value exported to the Report.

COMPUTER FILES

- ASCE_rcjtcs1.bpf
- Report_ASCE_rcjtcs1.pdf

EXAMPLE 9.2

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min=0.30
- FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

Units in N, mm

Knowledge Factor, KF = 0.85

Materials' Properties

lacket:

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm =

694.4444

Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: Existing material: Concrete Strength, fc = fcm =

20.00 Existing material: Steel Strength, fs = fsm = 444.44 Existing material: Steel Strength, fs = 1.25*fsm =555.5556

Member's Properties

Max Height, $H_{max} = 750.00$ Min Width, $H_{min} = 450.00$ Max Width, $W_{max} = 950.00$ Min Width, $W_{min} = 450.00$ Eccentricity, $E_{cc} = 250.00$ Jacket Thickness, $t_j = 100.00$ Cover Thickness, c = 25.00Element Length, L = 3000.00Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°)

<u>For Shear Capacity Calculations</u>: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00

Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00 Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min=0.30 FRP Wrapping Data Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01 Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1 Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.127. Comparison between seismobullu allu hallu-calculateu results for EAAMI LE 5.	Table 3.127. Com	iparison between	SeismoBuild and	d hand-calculated	results for E	EXAMPLE 9.2
---	------------------	------------------	-----------------	-------------------	---------------	-------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0020947	0.0020947
[rad]	Collapse Prevention	End	2	0.0365195	0.0365195
Shear Capacity [kN]	Immediate Occupancy	Start	3	857.719	857.719

COMPUTER FILES

- ASCE_rcjtcs2.bpf
- Report_ASCE_rcjtcs2.pdf

EXAMPLE 9.3

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length(lo/lou,min>=1)
- FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm = 781.25

Existing Column: Concrete Elasticity, Ec = 23025.204 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: Existing material: Concrete Strength, fc = fcm = 24.00 Existing material: Steel Strength, fs = fsm = 525.00 Existing material: Steel Strength, fs = 1.25*fsm =656.25 For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

<u>For Shear Capacity Calculations</u>: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00

Member's Properties

Max Height, $H_{max} = 750.00$ Min Width, $H_{min} = 450.00$ Max Width, $W_{max} = 950.00$ Min Width, $W_{min} = 450.00$ Eccentricity, $E_{cc} = 250.00$ Jacket Thickness, $t_j = 100.00$ Cover Thickness, c = 25.00Element Length, L = 3000.00Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars Without Lapping in the Vicinity of the End Regions Adequate Lap Length (lo/lou,min>=1) FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	2	0.0039600	0.0039600
[rad]	Life Safety	Start	3	0.0423750	0.0423750
Shear Capacity [kN]	Life Safety	Start	3	925.444	925.444

COMPUTER FILES

- ASCE_rcjtcs3.bpf
- Report_ASCE_rcjtcs3.pdf

EXAMPLE 9.4

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections

- Adequate Lap Length (lo/lou,min>=1)
- FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.90

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00 For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations:

Strength, $fc = fc_lower_bound = 25.00$

Strength, fs = fs_lower_bound = 500.00

New material of Secondary Member: Steel

New material of Secondary Member: Concrete

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 555.56 Existing material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

Max Height, $H_{max} = 750.00$ Min Width, $H_{min} = 450.00$ Max Width, $W_{max} = 950.00$ Min Width, $W_{min} = 450.00$ Eccentricity, $E_{cc} = 250.00$ Jacket Thickness, $t_i = 100.00$ Cover Thickness, c = 25.00Element Length, L = 3000.00 Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0034401	0.0034401
[rad]	Collapse Prevention	Start	3	0.0541267	0.0541267
Shear Capacity [kN]	Immediate Occupancy	End	3	1238.6	1238.584

Table 3.129. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 9.4

NOTE: The small difference between the Shear capacity obtained from the Hand Calculations and SeismoBuild is due to the rounding of the shear capacity value exported to the Report.

COMPUTER FILES

- ASCE_rcjtcs4.bpf
- Report_ASCE_rcjtcs4.pdf

EXAMPLE 9.5

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00

New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

Existing material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 555.56 Existing material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

Max Height, $H_{max} = 750.00$ Min Width, $H_{min} = 450.00$ Max Width, $W_{max} = 950.00$ Min Width, $W_{min} = 450.00$ Eccentricity, $E_{cc} = 250.00$ Jacket Thickness, $t_j = 100.00$ Cover Thickness, c = 25.00Element Length, L = 3000.00Secondary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

<u>For Shear Capacity Calculations</u>: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

Lap Length lo = 300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.130. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 9.5

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	2	0.0013390	0.0013390
[rad]	Life Safety	End	3	0.0276040	0.0276040
Shear Capacity [kN]	Operational Level	Start	2	1217.4	1217.447

NOTE: The small difference between the Shear capacity obtained from the Hand Calculations and SeismoBuild is due to the rounding of the shear capacity value exported to the Report.

COMPUTER FILES

- ASCE_rcjtcs5.bpf
- Report_ASCE_rcjtcs5.pdf

EXAMPLE 9.6

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 555.56 Existing material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

Max Height, $H_{max} = 750.00$ Min Width, $H_{min} = 450.00$ Max Width, $W_{max} = 950.00$ Min Width, $W_{min} = 450.00$ Eccentricity, $E_{cc} = 200.00$ Jacket Thickness, $t_j = 100.00$ Cover Thickness, c = 25.00 For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

Element Length, L = 3000.00 Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions. NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.131. Comparison between	SeismoBuild and hand	-calculated results for	• EXAMPLE 9.6
---------------------------------	----------------------	-------------------------	---------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occuancy	End	2	0.0012061	0.0012061
	Collapse Prevention	Start	2	0.0444372	0.0444372
Shear Capacity [kN]	Collapse Prevention	Start	2	1352.0	1351.973

NOTE: The small difference between the Shear capacity obtained from the Hand Calculations and SeismoBuild is due to the rounding of the shear capacity value exported to the Report.

COMPUTER FILES

- ASCE_rcjtcs6.bpf
- Report_ASCE_rcjtcs6.pdf

EXAMPLE 9.7

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min=0.30
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 For Shear Capacity Calculations:

New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: Existing material: Concrete Strength, fc = fcm = 20.00 Existing material: Steel Strength, fs = fsm = 444,44 Existing material: Steel Strength, fs = 1.25*fsm =555.55

Member's Properties

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Max Height, $H_{max} = 750.00$ Min Width, $H_{min} = 450.00$ Max Width, $W_{max} = 950.00$ Min Width, $W_{min} = 450.00$ Eccentricity, $E_{cc} = 250.00$ Jacket Thickness, $t_j = 100.00$ Cover Thickness, c = 25.00Element Length, L = 3000.00Secondary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min= 0.30 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.132. Comparison between Seismo	Build and hand-calculated results for EXAMPLE 9.7
--	---

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0025863	0.0025863
[rad]	Life Safety	End	2	0.0241424	0.0241424
Shear Capacity [kN]	Operational Level	Start	3	1004.7	1004.709

NOTE: The small difference between the Shear capacity obtained from the Hand Calculations and SeismoBuild is due to the rounding of the shear capacity value exported to the Report

COMPUTER FILES

- ASCE_rcjtcs7.bpf
- Report_TBDY_rcjtcs7.pdf

EXAMPLE 9.8

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.90

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00 For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56

New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 20.00 Existing material: Steel Strength, fs = fsm = 444,44 Existing material: Steel Strength, fs = 1.25*fsm =555.55

Member's Properties

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Max Height, $H_{max} = 750.00$ Min Width, $H_{min} = 450.00$ Max Width, $W_{max} = 950.00$ Min Width, $W_{min} = 450.00$ Eccentricity, $E_{cc} = 250.00$ Jacket Thickness, t_i = 100.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars Straight Ends Lapped Starting at the End Sections Lap Length lo = 300.00**FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	2	0.0019152	0.0019152
[rad]	Collapse Prevention	End	3	0.0380613	0.0380613
Shear Capacity [kN]	Immediate Occupancy	Start	2	1111.4	1111.396

Гable 3.133. Comparison betweer	SeismoBuild and hand-	calculated results for	EXAMPLE 9.8
---------------------------------	-----------------------	------------------------	--------------------

NOTE: The small difference between the Shear capacity obtained from the Hand Calculations and SeismoBuild is due to the rounding of the shear capacity value exported to the Report.

COMPUTER FILES

- ASCE_rcjtcs8.bpf
- Report_ASCE_rcjtcs8.pdf

EXAMPLE 9.9

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End SectionsLap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm = 30.00

New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 6525.00 New material: Steel Strength, fs = 1.25*fsm =555.55

Member's Properties

Max Height, $H_{max} = 750.00$ Min Width, $H_{min} = 450.00$ Max Width, $W_{max} = 950.00$ Min Width, $W_{min} = 450.00$ Eccentricity, $E_{cc} = 250.00$ Jacket Thickness, $t_j = 100.00$ Cover Thickness, c = 25.00Element Length, L = 3000.00Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°)

<u>For Shear Capacity Calculations</u>: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

<u>For Shear Capacity Calculations</u>: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.134. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 9.9

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0001967	0.0001967
[rad]	Collapse Prevention	Start	2	0.0338982	0.0338982
Shear Capacity [kN]	Collapse Prevention	Start	2	1194.3	1194.289

NOTE: The small difference between the Shear capacity obtained from the Hand Calculations and SeismoBuild is due to the rounding of the shear capacity value exported to the Report.

COMPUTER FILES

- ASCE_rcjtcs9.bpf
- Report_ASCE_rcjtcs9.pdf

EXAMPLE 9.10

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length withlo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.80

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56

New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

 $\begin{array}{l} Max \ Height, \ H_{max} = 750.00\\ Min \ Width, \ H_{min} = 450.00\\ Max \ Width, \ W_{max} = 950.00\\ Min \ Width, \ W_{min} = 450.00\\ Eccentricity, \ E_{cc} = 250.00\\ Jacket \ Thickness, \ t_{j} = 100.00 \end{array}$

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

Cover Thickness, c = 25.00Element Length, L = 3000.00 **Primary Member Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 **FRP Wrapping** Type: Carbon Dry properties (design values) Thickness, t = 1.00 Tensile Strength, ffu = 840.00 Tensile Modulus, Ef = 82000.00 Elongation, efu = 0.009Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

|--|

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0024396	0.0024396
[rad]	Life Safety	End	2	0.0309284	0.0309284
Shear Capacity [kN]	Immediate Occupancy	Start	3	1108.1	1108.090

NOTE: The small difference between the Shear capacity obtained from the Hand Calculations and SeismoBuild is due to the rounding of the shear capacity value exported to the Report.

COMPUTER FILES

- ASCE_rcjtcs10.bpf
- Report_ASCE_rcjtcs10.pdf

EXAMPLE 9.11

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

Units in N, mm

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 For Shear Capacity Calculations:

New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

Max Height, $H_{max} = 750.00$ Min Width, $H_{min} = 450.00$ Max Width, $W_{max} = 950.00$ Min Width, $W_{min} = 450.00$ Eccentricity, $E_{cc} = 250.00$ Jacket Thickness, t_i = 100.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars **Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1 Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	2	0.0009446	0.0009446
[rad]	Life Safety	Start	3	0.0325098	0.0325098
Shear Capacity [kN]	Life Safety	End	2	1100.5	1100.510

Table 3.136. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 9.11

NOTE: The small difference between the Shear capacity obtained from the Hand Calculations and SeismoBuild is due to the rounding of the shear capacity value exported to the Report.

COMPUTER FILES

- ASCE_rcjtcs11.bpf
- Report_ASCE_rcjtcs11.pdf

EXAMPLE 9.12

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing column

DESCRIPTION

A jacketed T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.
GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00

New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

Section Max Height, $H_{max} = 750.00$ Section Min Width, $H_{min} = 450.00$ Section Max Width, $W_{max} = 950.00$ Section Min Width, $W_{min} = 450.00$ Eccentricity, $E_{cc} = 250.00$ Jacket Thickness, $t_j = 100.00$ Cover Thickness, c = 25.00Element Length, L = 3000.00Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections

<u>For Shear Capacity Calculations</u>: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

<u>For Shear Capacity Calculations</u>: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.137. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 9.12

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0040705	0.0040705
[rad]	Collapse Prevention	Start	3	0.0492964	0.0492964
Shear Capacity [kN] Immediate Occupancy End		End	2	1432.100	1432.100

COMPUTER FILES

- ASCE_rcjtcs12.bpf
- Report_ASCE_rcjtcs12.pdf

EXAMPLE 9.13

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End SectionsAdequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.80

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 30.00

New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm = 781.25

Existing Column: Concrete Elasticity, Ec = 23025.204 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 24.00 New material: Steel Strength, fs = fsm = 525.00 New material: Steel Strength, fs = 1.25*fsm =656.25

Member's Properties

Section Max Height, $H_{max} = 750.00$ Section Min Width, $H_{min} = 450.00$ Section Max Width, $W_{max} = 950.00$ Section Min Width, $W_{min} = 450.00$ Eccentricity, $E_{cc} = 250.00$ Jacket Thickness, $t_j = 100.00$ Cover Thickness, c = 25.00Element Length, L = 3000.00Secondary Member Smooth Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.138. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 9.13

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0058986	0.0058986
[rad]	Life Safety	Start	2	0.0337370	0.0337370
Shear Capacity [kN]	Life Safety	Start	2	921.379	921.379

COMPUTER FILES

- ASCE_rcjtcs13.bpf
- Report_ASCE_rcjtcs13.pdf

EXAMPLE 9.14

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing column

DESCRIPTION

A jacketed T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.80

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00

New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 20.00 New material: Steel Strength, fs = fsm = 444.44 New material: Steel Strength, fs = 1.25*fsm =555.55

Member's Properties

Section Max Height, $H_{max} = 750.00$ Section Min Width, $H_{min} = 450.00$ Section Max Width, $W_{max} = 950.00$ Section Min Width, $W_{min} = 450.00$ Eccentricity, $E_{cc} = 250.00$ Jacket Thickness, $t_j = 100.00$ Cover Thickness, c = 25.00Element Length, L = 3000.00Primary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00

<u>For Shear Capacity Calculations</u>: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

<u>For Shear Capacity Calculations</u>: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00 FRP Wrapping Data Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01 Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1 Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local SeismoBuild Axis 2018		Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0002276	0.0002276
[rad]	Collapse Prevention	End	2	0.0222877	0.0222877
Shear Capacity [kN]	Immediate Occupancy	End	3	532.765	532.765

Table 3.139. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 9.14

COMPUTER FILES

- ASCE_rcjtcs14.bpf
- Report_ASCE_rcjtcs14.pdf

EXAMPLE 9.15

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min = lb/ld >=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and Exiting Material Sets type for the Existing column

DESCRIPTION

A jacketed T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

Units in N, mm

Knowledge Factor, KF = 0.80

Materials' Properties

<u>Jacket:</u> Concrete Electicit

Concrete Elasticity, Ec = 19940.411 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 18.00 New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 12.00 New material: Steel Strength, fs = fsm = 525.00 New material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

Max Height, $H_{max} = 750.00$ Min Width, $H_{min} = 450.00$ <u>For Shear Capacity Calculations</u>: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 12.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 8.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 420.00

Max Width, $W_{max} = 950.00$ Min Width, $W_{min} = 450.00$ Eccentricity, $E_{cc} = 250.00$ Jacket Thickness, $t_j = 100.00$ Cover Thickness, c = 25.00Element Length, L = 3000.00Primary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min = lb/ld >=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Fable 3.140. Com	parison between	SeismoBuild a	and hand-calcul	ated results for	EXAMPLE 9.15
rubic bir ivi com	pui ison beeween	Jeismo Duna (and nund curcui	ateu i coulto ioi	D/211011 DD 7110

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Life Safety	Start	2	0.0192082	0.0192082
[rad]	Operational Level	Start	3	0.0026378	0.0026378
Shear Capacity [kN]	Operational Level	Start	3	734.493	734.493

COMPUTER FILES

- ASCE_rcjtcs15.bpf
- Report_ASCE_rcjtcs15.pdf

EXAMPLE 9.16

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min = lb/ld >=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and Exiting Material Sets type for the Existing column

DESCRIPTION

A jacketed T-shaped column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

Units in N, mm

Knowledge Factor, KF = 0.80

Materials' Properties

<u>Jacket:</u> Concrete Electicit

Concrete Elasticity, Ec = 19940.411 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 18.00 New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 12.00 New material: Steel Strength, fs = fsm = 525.00 New material: Steel Strength, fs = 1.25*fsm =694.45

Member's Properties

Max Height, $H_{max} = 750.00$ Min Width, $H_{min} = 450.00$ <u>For Shear Capacity Calculations</u>: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 12.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 8.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 420.00

Max Width, $W_{max} = 950.00$ Min Width, $W_{min} = 450.00$ Eccentricity, $E_{cc} = 250.00$ Jacket Thickness, $t_j = 100.00$ Cover Thickness, c = 25.00Element Length, L = 3000.00Primary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min = lb/ld >=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3 141 (omnarison hetween	SeismoRuild	and hand-calculated	results for	FXAMPLE 9 16
1 abie 5.141. U	lomparison between	Seisillobullu	and nanu-calculated	l esuits ioi	EVAMILE 2.10

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Life Safety	Start	2	0.0103522	0.0103522
[rad]	Operational Level	Start	3	0.0108117	0.0108117
Shear Capacity [kN] Operational Level		Start	3	792.832	792.833

NOTE: The small difference between the Shear capacity obtained from the Hand Calculations and SeismoBuild is due to the rounding of the shear capacity value exported to the Report.

COMPUTER FILES

- ASCE_rcjtcs16.bpf
- Report_ASCE_rcjtcs16.pdf

EXAMPLES SET 10: JACKETED CIRCULAR COLUMN SECTION

EXAMPLE 10.1

SUCCINCT DATA

- Primary Member
- Ribbed Bars

- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length(lo/lou,min> = 1)
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing Column

DESCRIPTION

A jacketed circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.4444

Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Shear Capacity Calculations:

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00 For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 20.00 New material: Steel Strength, fs = fsm = 444.44 New material: Steel Strength, fs = 1.25*fsm =555.5556

Member's Properties

External Diameter, Dext = 500.00 Internal Diameter, Dint = 300.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Ribbed Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lb/lb,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0065022	0.0065022
[rad]	Life Safety	Start	2	0.0487476	0.0487476
Shear Capacity [kN]	Operational Level	End	3	430.747	430.747

COMPUTER FILES

- ASCE_rcjcs1.bpf
- Report_ASCE_rcjcs1.pdf

EXAMPLE 10.2

SUCCINCT DATA

- Primary Member
- Smooth Bars

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00

- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing Column

DESCRIPTION

A jacketed circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.5

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.4444

Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Shear Capacity Calculations:

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Chord rotation Calculations: For Shear Capacity Calculations: New material: Concrete Strength, fc = fcm = New material of Primary Member: Concrete 20.00 Strength, $fc = fc_lower_bound = 16.00$ New material: Steel Strength, fs = fsm = 444.44 New material of Primary Member: Steel New material: Steel Strength, fs = 1.25*fsm Strength, fs = fs_lower_bound = 400.00 =555.5556 **Member's Properties** External Diameter, Dext = 500.00 Internal Diameter, Dint = 300.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 **Primary Member** Smooth Bars **Ductile Steel** With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

member of interest in the Detailed Calculations (Annex) tab of the Print-out Options module.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.143. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 10.2

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0079234	0.0079234
[rad]	Collapse Prevention	End	2	0.0396607	0.0396607
Shear Capacity [kN]	Collapse Prevention	End	2	487.404	487.404

COMPUTER FILES

- ASCE_rcjcs2.bpf
- Report_ASCE_rcjcs2.pdf

EXAMPLE 10.3

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- FRP Wrapping
- New Material Sets type for the Jacket and Existing for the Existing Column

DESCRIPTION

A jacketed circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00 For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 625.00New material: Steel Strength, fs = 1.25*fsm = 781.25 **Existing Column:** Concrete Elasticity, Ec = 23025.204 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 24.00 New material: Steel Strength, fs = fsm = 525.00New material: Steel Strength, fs = 1.25*fsm =656.25

Member's Properties

Thickness, t = 1.016

Elongation, efu = 0.01

Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00

Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1

Radius of rounding corners, R = 40.00

External Diameter, Dext = 500.00 Internal Diameter, Dint = 300.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 **Primary Member** Smooth Bars **Ductile Steel** With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values)

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, $fc = fc_lower_bound = 20.00$

New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 420.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the Detailed Calculations (Annex) tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	2	0.0144697	0.0144697
[rad]	Life Safety	Start	3	0.0693782	0.0693782
Shear Capacity [kN]	Operational Level	Start	3	529.689	529.689

Table 3.144. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 10.3

COMPUTER FILES

- ASCE_rcjcs3.bpf
- Report_ASCE_rcjcs3.pdf

EXAMPLE 10.4

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- FRP Wrapping
- New Material Sets type for the Jacket and New for the Existing Column

DESCRIPTION

A jacketed circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

Units in N, mm

Knowledge Factor, KF = 0.90

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 Member's Properties

Member's Properties

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

External Diameter, Dext = 500.00 Internal Diameter, Dint = 300.00 Cover Thickness, c = 25.00Element Length, L = 3000.00 Secondary Member **Ribbed Bars Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) **FRP Wrapping Data** Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.145. Com	parison between S	SeismoBuild and	hand-calculated re	sults for EXAMPLE 10.4

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0065965	0.0065965
[rad]	Collapse Prevention	Start	3	0.0840950	0.0840950
Shear Capacity [kN]	Immediate Occupancy	End	3	614.520	614.520

COMPUTER FILES

- ASCE_rcjcs4.bpf
- Report_ASCE_rcjcs4.pdf

EXAMPLE 10.5

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type for the Jacket and New for the Existing Column

DESCRIPTION

A jacketed circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56

New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

External Diameter, Dext = 500.00 Internal Diameter, Dint = 300.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00 No FRP Wrapping

For Shear Capacity Calculations:

New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

<u>For Shear Capacity Calculations</u>: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Cable 3 146	Comparison	hetween Seis	moBuild and	hand-calculated	l results for	FXAMPLE 10.5
able 5.140.	Comparison	Detween Seis	modunu anu	i nanu-caiculatet	i l'esuits ioi	EVAMILE 10.2

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0006142	0.0006142
[rad]	Life Safety	Start	3	0.0272995	0.0272995
Shear Capacity [kN]	Operational Level	Start	2	345.303	345.303

COMPUTER FILES

- ASCE_rcjcs5.bpf
- Report_ASCE_rcjcs5.pdf

EXAMPLE 10.6

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type for the Jacket and New for the Existing Column

DESCRIPTION

A jacketed circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm = 33.00

New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

External Diameter, Dext = 500.00 Internal Diameter, Dint = 300.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 FRP Wrapping Data Type: Carbon Cured laminate properties (design values)

For Shear Capacity Calculations:

New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

<u>For Shear Capacity Calculations</u>: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 Thickness, t = 1.016Tensile Strength, ffu = 1055.00Tensile Modulus, Ef = 64828.00Elongation, efu = 0.01Number of directions, NoDir = 1Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Fable 3.147. Comparison between SeismoBuild and hand-calculated results for EXAMPLE	10.6
---	------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0045259	0.0045259
[rad]	Collapse Prevention	Start	2	0.0465259	0.0465259
Shear Capacity [kN]	Immediate Occupancy	Start	2	515.957	515.957

COMPUTER FILES

- ASCE_rcjcs6.bpf
- Report_ASCE_rcjcs6.pdf

EXAMPLE 10.7

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing Column

DESCRIPTION

A jacketed circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

312 SeismoBuild Verification Report

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 20.00 New material: Steel Strength, fs = fsm = 444.44 New material: Steel Strength, fs = 1.25*fsm = 555.55 Member's Properties

Member's Properties

External Diameter, Dext = 500.00 Internal Diameter, Dint = 300.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Ribbed Bars For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 No FRP Wrapping Data

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.148. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 10.7

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0084945	0.0084945
[rad]	Life Safety	End	2	0.0254019	0.0254019
Shear Capacity [kN]	Operational Level	Start	2	339.072	339.072

COMPUTER FILES

- ASCE_rcjcs7.bpf
- Report_ASCE_rcjcs7.pdf

EXAMPLE 10.8

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- FRP Wrapping Data
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing Column

DESCRIPTION

A jacketed circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

314 SeismoBuild Verification Report

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.85

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 20.00 New material: Steel Strength, fs = fsm = 444.44 New material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

External Diameter, Dext = 500.00 Internal Diameter, Dint = 300.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00 Lap Length lo = 300.00 FRP Wrapping Data Type: Carbon Cured laminate properties (design values) Thickness, t = 1.016 Tensile Strength, ffu = 1055.00 Tensile Modulus, Ef = 64828.00 Elongation, efu = 0.01 Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1 Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.149. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 10.8

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0010941	0.0010941
[rad]	Collapse Prevention	Start	2	0.0474707	0.0474707
Shear Capacity [kN]	Immediate Occupancy	Start	2	481.412	481.412

COMPUTER FILES

- ASCE_rcjcs8.bpf
- Report_ASCE_rcjcs8.pdf

EXAMPLE 10.9

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing Column

DESCRIPTION

A jacketed circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF =1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm = 781.25

Existing Column: Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm = 781.25

Member's Properties

External Diameter, Dext = 500.00 Internal Diameter, Dint = 300.00 For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel

Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.150. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 10.9

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0064825	0.0064825
[rad]	Collapse Prevention	Start	2	0.0328584	0.0328584
Shear Capacity [kN]	Operational Level	Start	2	334.975	334.975

COMPUTER FILES

- ASCE_rcjcs9.bpf
- Report_ASCE_rcjcs9.pdf

EXAMPLE 10.10

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing Column

DESCRIPTION

A jacketed circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

318 SeismoBuild Verification Report

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

Units in N, mm

Knowledge Factor, KF = 0.75

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 Mombar's Properties

Member's Properties

External Diameter, Dext = 500.00 Internal Diameter, Dint = 300.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Ribbed Bars For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End SectionsInadequate Lap Length with lo/lou.min = 0.30**FRP Wrapping Data** Type: Carbon Dry properties (design values) Thickness, t = 1.00 Tensile Strength, ffu = 840.00 Tensile Modulus, Ef = 82000.00 Elongation, efu = 0.009Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the Detailed Calculations(Annex) tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.151. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 10.10

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0090635	0.0090635
[rad]	Life Safety	End	2	0.0495306	0.0495306
Shear Capacity [kN]	Immediate Occupancy	Start	2	515.957	515.957

COMPUTER FILES

- ASCE_rcjcs10.bpf
- Report_ASCE_rcjcs10.pdf

EXAMPLE 10.11

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30

- FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing Column

DESCRIPTION

A jacketed circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

Member's Properties

External Diameter, Dext = 500.00 Internal Diameter, Dint = 300.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars **Ductile Steel** Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.3FRP Wrapping Data Type: Carbon Dry properties (design values) Thickness, t = 1.00Tensile Strength, ffu = 840.00 Tensile Modulus, Ef = 82000.00 Elongation, efu = 0.009Number of directions, NoDir = 1 Fiber orientations, bi: 0.00° Number of layers, NL = 1Radius of rounding corners, R = 40.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Fable 3.152. Comparison between	SeismoBuild and hand-calculated	results for EXAMPLE 10.11
---------------------------------	---------------------------------	---------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	2	0.0051658	0.0051658
[rad]	Life Safety	Start	3	0.0553342	0.0553342
Shear Capacity [kN]	Operational Level	Start	2	515.961	515.961

COMPUTER FILES

- ASCE_rcjcs11.bpf
- Report_ASCE_rcjcs11.pdf

EXAMPLE 10.12

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing Column

DESCRIPTION

A jacketed circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 For Shear Capacity Calculations:

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00 Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

External Diameter, Dext = 500.00 Internal Diameter, Dint = 300.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.153. Comparison betwee	n SeismoBuild and hand-calculated	results for EXAMPLE 10.12
--------------------------------	-----------------------------------	---------------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity [rad]	Immediate Occupancy	End	2	0.0122955	0.0122955
	Collapse Prevention	Start	3	0.0699601	0.0699601
Shear Capacity [kN]	Operational Level	Start	2	345.303	345.303

COMPUTER FILES

- ASCE_rcjcs12.bpf
- Report_ASCE_rcjcs12.pdf

EXAMPLE 10.13

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing Column

DESCRIPTION

A jacketed circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.80

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm = 781.25 For Shear Capacity Calculations:

New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00
Existing Column: Concrete Elasticity, Ec = 23025.204 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 24.00 New material: Steel Strength, fs = fsm = 525.00 New material: Steel Strength, fs = 1.25*fsm = 656.25

Member's Properties

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 420.00

External Diameter, Dext = 500.00 Internal Diameter, Dint = 300.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Smooth Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.154. Comparis	on between Se	ismoBuild and h	nand-calculated	results for	EXAMPLE 10.13
-----------------------	---------------	-----------------	-----------------	-------------	----------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0179092	0.0179092
[rad]	Life Safety	Start	2	0.0414000	0.0414000
Shear Capacity [kN]	Operatioanal Level	Start	2	265.413	265.413

COMPUTER FILES

- ASCE_rcjcs13.bpf
- Report_ASCE_rcjcs13.pdf

EXAMPLE 10.14

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = lb = 300.00
- FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing Column

DESCRIPTION

A jacketed circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

Units in N, mm

Knowledge Factor, KF = 0.80

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 For Shear Capacity Calculations:

New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 20.00 Existing material: Steel Strength, fs = fsm = 444.44 Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

For Shear Capacity Calculations: Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

External Diameter, Dext = 500.00 Internal Diameter, Dint = 300.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Fable 3.155 .	Comparison betwee	n SeismoBuild and han	d-calculated results for	or EXAMPLE 10.14
----------------------	-------------------	-----------------------	--------------------------	------------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0010214	0.0010214
[rad]	Collapse Prevention	End	2	0.0471071	0.0471071
Shear Capacity [kN]	Operational Level	Start	2	396.407	396.407

COMPUTER FILES

- ASCE_rcjcs14.bpf
- Report_ASCE_rcjcs14.pdf

EXAMPLE 10.15

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min = lb/ld >=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and New for the Existing Column

DESCRIPTION

A jacketed circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 For Shear Capacity Calculations:

New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00 Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45 Mambar's Proportion

Member's Properties

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

External Diameter, Dext = 350.00 Internal Diameter, Dint = 200.00 Cover Thickness, c = 15.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min = lb/ld >=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0121590	0.0121590
[rad]	Collapse Prevention	Start	3	0.0520994	0.0521002
Shear Capacity [kN]	Operational Level	Start	2	345.303	345.303

NOTE: The small difference between the Chord Rotation Capacity obtained from the Hand Calculations and SeismoBuild is due to the rounding of the shear capacity value exported to the Report.

COMPUTER FILES

ASCE_rcjcs15.bpf

Report_ASCE_rcjcs15.pdf

EXAMPLE 10.16

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min = lb/ld >=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and New for the Existing Column

DESCRIPTION

A jacketed circular column section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u> Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00 For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm =

694.45 **Existing Column:** Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

External Diameter, Dext = 350.00 Internal Diameter, Dint = 200.00 Cover Thickness, c = 15.00 Element Length, L = 3000.00 **Primary Member** Smooth Bars **Ductile Steel** With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min = lb/ld >=1) No FRP Wrapping

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, $fc = fc_lower_bound = 25.00$ New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs lower bound = 500.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the Detailed Calculations (Annex) tab of the Print-out Options module.

MODELLING AND LOADING

The column member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH) fully restrained at its support.

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.157. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 10.16

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0121590	0.0121590
[rad]	Collapse Prevention	Start	3	0.042206	0.042206
Shear Capacity [kN]	Operational Level	Start	2	345.303	345.303

COMPUTER FILES

- ASCE_rcjcs16.bpf
- Report_ASCE_rcjcs16.pdf

EXAMPLES SET 11: JACKETED BEAM SECTION

EXAMPLE 11.1

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length(lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing Beam

DESCRIPTION

A jacketed beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00 <u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56

New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 20.00 Existing material: Steel Strength, fs = fsm = 444.44 New material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

<u>For Shear Capacity Calculations</u>: Existing material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Primary Member: Steel Strength, fs = fs lower bound = 400.00

New material of Primary Member: Concrete

Strength, $fc = fc_lower_bound = 25.00$

New material of Primary Member: Steel

Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations:

External Height, H = 670.00External Width, W = 400.00Internal Height, H = 500.00Internal Width, W = 200.00Cover Thickness, c = 25.00Element Length, L = 3000.00Primary Member Ribbed Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1)) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.158. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 11.1

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0087038	0.0087038
[rad]	Life Safety	Start	2	0.0265184	0.0265184

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Shear Capacity [kN]	Operational Level	End	3	476.752	476.752

COMPUTER FILES

- ASCE_JBeam1.bpf
- ASCE_TBDY_JBeam1.pdf

EXAMPLE 11.2

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing Beam

DESCRIPTION

A jacketed beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u> Knowledge Factor, KF = 0.85

Materials' Properties

<u>Jacket:</u>

Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 20.00 New material: Steel Strength, fs = fsm = 444.44 New material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

External Height, H = 670.00 External Width, W = 400.00 Internal Height, H = 500.00 Internal Width, W = 200.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

For Shear Capacity Calculations: Existing material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 Existing material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: Existing material of Primary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0060209	0.0060209
[rad]	Collapse Prevention	End	2	0.0258962	0.0258962
Shear Capacity [kN]	Immediate Occupancy	Start	3	403.544	403.544

Table 3.159. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 11.2

COMPUTER FILES

- ASCE_JBeam2.bpf
- Report_ASCE_JBeam2.pdf

EXAMPLE 11.3

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing Beam

DESCRIPTION

A jacketed beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

Units in N, mm

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm = 781.25

Existing Column: Concrete Elasticity, Ec = 23025.204 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 24.00 New material: Steel Strength, fs = fsm = 525.00 New material: Steel Strength, fs = 1.25*fsm = 656.25 Member's Properties

Member's Properties

External Height, H = 670.00 External Width, W = 400.00 Internal Height, H = 500.00 Internal Width, W = 200.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

n = 525.00Strength, fc = fc_lower_bound = 16.00Strength, fc = fc_lower_bound = 420.00Existing material of Primary Member: SteelStrength, fs = fs_lower_bound = 420.00

For Shear Capacity Calculations:

For Shear Capacity Calculations:

Strength, fc = fc_lower_bound = 20.00

Strength, fs = fs_lower_bound = 500.00

Existing material of Primary Member: Concrete

Existing material of Primary Member: Concrete

Existing material of Primary Member: Steel

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	2	0.0109653	0.0109653
[rad]	Life Safety	Start	3	0.0240999	0.0240999
Shear Capacity [kN]	Operational Level	End	2	315.128	315.128

Table 3.160. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 11.3

COMPUTER FILES

- ASCE_JBeam3.bpf
- Report_ASCE_JBeam3.pdf

EXAMPLE 11.4

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing Beam

DESCRIPTION

A jacketed beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

Units in N, mm

Knowledge Factor, KF = 0.85

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

External Height, H = 670.00 External Width, W = 400.00 Internal Height, H = 500.00 Internal Width, W = 200.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations:

New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0084412	0.0084412
[rad]	Collapse Prevention	Start	3	0.0334404	0.0334404
Shear Capacity [kN]	Immediate Occupancy	End	3	494.205	494.208

Table 3.161. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 11.4

NOTE: The small difference between the Shear capacity obtained from the Hand Calculations and SeismoBuild is due to the rounding of the shear capacity value exported to the Report.

COMPUTER FILES

- ASCE_JBeam4.bpf
- Report_ASCE_JBeam4.pdf

EXAMPLE 11.5

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing Beam

DESCRIPTION

A jacketed beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00

New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

External Height, H = 670.00External Width, W = 400.00Internal Height, H = 500.00Internal Width, W = 200.00Cover Thickness, c = 25.00Element Length, L = 3000.00Secondary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00No FRP Wrapping

<u>For Shear Capacity Calculations</u>: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations:

New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.162. Comparison betw	veen SeismoBuild and ha	nd-calculated results for	r EXAMPLE 11.5
------------------------------	-------------------------	---------------------------	----------------

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	2	0.0130761	0.0130761
[rad]	Life Safety	End	2	0.0204694	0.0204694
Shear Capacity [kN]	Life Safety	End	3	492.752	492.752

COMPUTER FILES

- ASCE_JBeam5.bpf
- Report_ASCE_JBeam5.pdf

EXAMPLE 11.6

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min=0.30
- No FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing Beam

DESCRIPTION

A jacketed beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00

New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

External Height, H = 670.00 External Width, W = 400.00 Internal Height, H = 500.00 Internal Width, W = 200.00 Cover Thickness, c = 25.00 Element Length, L = 3000 Secondary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 No FRP Wrapping

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations:

New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3 163 <i>Co</i>	omnarison hetween	SeismoRuild a	nd hand-calculated	results for	FXAMPI F 11 6
1 abie 5.105. C	uniparison between	seisiilobullu a	nu nanu-calculateu	Tesuits IOI	CAMIFLE 11.0

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0105334	0.0105334
[rad]	Collapse Prevention	Start	2	0.0337926	0.0337926
Shear Capacity [kN]	Collapse Prevention	Start	2	339.072	339.072

COMPUTER FILES

- ASCE_JBeam6.bpf
- Report_ASCE_JBeam6.pdf

EXAMPLE 11.7

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min=0.30
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing Beam

DESCRIPTION

A jacketed beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56

New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 20.00 Existing material: Steel Strength, fs = fsm = 444.44 Existing material: Steel Strength, fs = 1.25*fsm = 555.56

Member's Properties

External Height, H = 670.00External Width, W = 400.00Internal Height, H = 500.00Internal Width, W = 200.00Cover Thickness, c = 25.00Element Length, L = 3000.00Secondary Member Ribbed Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

<u>For Shear Capacity Calculations</u>: Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Inadequate Lap Length with lo/lou,min = 0.30 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations (Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.164. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 11.7

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0076939	0.0076939
[rad]	Life Safety	End	2	0.0205827	0.0205827
Shear Capacity [kN]	Operational Level	Start	3	468.150	468.150

COMPUTER FILES

- ASCE_JBeam7.bpf
- Report_ASCE_JBeam7.pdf

EXAMPLE 11.8

SUCCINCT DATA

- Secondary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing Beam

DESCRIPTION

A jacketed beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.90

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56

New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm =

20.00 Existing material: Steel Strength, fs = fsm = 444.44 Existing material: Steel Strength, fs = 1.25*fsm = 555.56

Member's Properties

External Height, H = 670.00 External Width, W = 400.00 Internal Height, H = 500.00 Internal Width, W = 200.00 Cover Thickness, c = 25.00 Element Length, L = 3000.00 Secondary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections

For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

<u>For Shear Capacity Calculations</u>: Existing material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 16.00 Existing material of Secondary Member: Steel Strength, fs = fs_lower_bound = 400.00

Lap Length lo = 300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.165. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 11.8

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	2	0.0133137	0.0133137
[rad]	Collapse Prevention	End	3	0.0294028	0.0294028
Shear Capacity [kN]	Immediate Occupancy	Start	2	294.423	294.423

COMPUTER FILES

- ASCE_JBeam8.bpf
- Reportt_ASCE_JBeam8.pdf

EXAMPLE 11.9

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing Beam

DESCRIPTION

A jacketed beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

Existing Column: Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 625.00

New material: Steel Strength, fs = 1.25*fsm = 781.25

<u>Jacket:</u> Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 30.00 Existing material: Steel Strength, fs = fsm = 625.00 Existing material: Steel Strength, fs = 1.25*fsm = 781.25

Member's Properties

External Height, H = 670.00External Width, W = 400.00Internal Height, H = 500.00Internal Width, W = 200.00Cover Thickness, c = 25.00Element Length, L = 3000.00Primary Member Smooth Bars Ductile Steel With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections

For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

<u>For Shear Capacity Calculations</u>: New material of Primary Member: Concrete Strength, fc = fc_lower_bound =20.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

Lap Length lo = 300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.166. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 11.9

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	3	0.0066567	0.0066567
[rad]	Collapse Prevention	Start	2	0.0323132	0.0323132
Shear Capacity [kN]	Collapse Prevention	Start	2	320.964	320.964

COMPUTER FILES

- ASCE_JBeam9.bpf
- Report_ASCE_JBeam9.pdf

EXAMPLE 11.10

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- No FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing Beam

DESCRIPTION

A jacketed beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.85

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations:

New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56

New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 555.56 Existing material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

External Height, H = 670.00External Width, W = 400.00Internal Height, H = 500.00Internal Width, W = 200.00Cover Thickness, c = 25.00Element Length, L = 3000.00Primary Member Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections

<u>For Shear Capacity Calculations</u>: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

<u>For Shear Capacity Calculations</u>: New material of Primary Member: Concrete Strength, fc = fc_lower_bound =25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

Inadequate Lap Length with lo/lou,min = 0.30 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.167. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 11.10

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	Start	3	0.0069315	0.0069315
[rad]	Life Safety	End	2	0.0205334	0.0205334
Shear Capacity [kN]	Immediate Occupancy	Start	3	489.504	489.504

COMPUTER FILES

- ASCE_JBeam10.bpf
- Report_ASCE_JBeam10.pdf

EXAMPLE 11.11

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Inadequate Lap Length with lo/lou,min = 0.30
- No FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing Beam

DESCRIPTION

A jacketed beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The

employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 555.56 Existing material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

External Height, H = 670.00External Width, W = 400.00Internal Height, H = 500.00Internal Width, W = 200.00Cover Thickness, c = 25.00Element Length, L = 3000.00Secondary Member Smooth Bars Ductile Steel For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

<u>For Shear Capacity Calculations</u>: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound =25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00 Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Inadequate Lap Length with lo/lou,min = 0.30 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.168.	Comparison	between Seism	oBuild and h	and-calculated	results for	EXAMPLE 1	11.11

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	End	2	0.0105867	0.0105867
[rad]	Life Safety	Start	3	0.0224565	0.0224565
Shear Capacity [kN]	Operational Level	End	2	339.072	339.072

COMPUTER FILES

- ASCE_JBeam11.bpf
- Report_ASCE_JBeam11.pdf

EXAMPLE 11.12

SUCCINCT DATA

- Primary Member
- Smooth Bars
- Ductile Steel
- With Detailing for Earthquake Resistance (including stirrups closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and New Material Sets type for the Existing Beam

DESCRIPTION

A jacketed beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity, strain and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The

employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 1.00

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm = 555.56 New material: Steel Strength, fs = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 33.00 Existing material: Steel Strength, fs = fsm = 555.56 Existing material: Steel Strength, fs = 1.25*fsm = 694.45

Member's Properties

External Height, H = 670.00External Width, W = 400.00Internal Height, H = 500.00Internal Width, W = 200.00Cover Thickness, c = 25.00Element Length, L = 3000.00Primary Member Smooth Bars Ductile Steel For Shear Capacity Calculations: New material of Primary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00

<u>For Shear Capacity Calculations</u>: New material of Primary Member: Concrete Strength, fc = fc_lower_bound =25.00 New material of Primary Member: Steel Strength, fs = fs_lower_bound = 500.00 With Detailing for Earthquake Resistance (including stirrups closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lo/lou,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.169.	Comparison	between Sei	smoBuild ar	nd hand-ca	lculated r	results for	EXAMPI	LE 11.1	2

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	2	0.0109490	0.0109490
[rad]	Collapse Prevention	Start	3	0.0334404	0.0334404
Shear Capacity [kN]	Immediate Occupancy	End	2	339.072	339.072

COMPUTER FILES

- ASCE_JBeam12.bpf
- Report_ASCE_JBeam12.pdf

EXAMPLE 11.13

SUCCINCT DATA

- Secondary Member
- Smooth Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Adequate Lap Length (lo/lou,min>=1)
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing Beam

DESCRIPTION

A jacketed beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The

employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.87

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 25742.96 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: New material: Concrete Strength, fc = fcm = 30.00 New material: Steel Strength, fs = fsm = 625.00 New material: Steel Strength, fs = 1.25*fsm = 781.25

Existing Column: Concrete Elasticity, Ec = 23025.204 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 24.00 Existing material: Steel Strength, fs = fsm = 525.00 Existing material: Steel Strength, fs = 1.25*fsm = 656.25

Member's Properties

External Height, H = 670.00External Width, W = 400.00Internal Height, H = 500.00Internal Width, W = 200.00Cover Thickness, c = 25.00Mean Confinement Factor overall section = 1.00 Element Length, L = 3000.00Secondary Member Smooth Bars For Shear Capacity Calculations: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 20.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: Existing material of Primary Member: Concrete Strength, fc = fc_lower_bound =16.00 Existing material of Primary Member: Steel Strength, fs = fs_lower_bound = 420.00 Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Adequate Lap Length (lb/lb,min>=1) No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.170. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 11.13

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Operational Level	Start	3	0.0079194	0.0079194
[rad]	Life Safety	Start	2	0.0284834	0.0284834
Shear Capacity [kN]	Life Safety	Start	2	274.162	274.162

COMPUTER FILES

- ASCE_JBeam13.bpf
- Report_ASCE_JBeam13.pdf

EXAMPLE 11.14

SUCCINCT DATA

- Primary Member
- Ribbed Bars
- Ductile Steel
- Without Detailing for Earthquake Resistance (including stirrups not closed at 135°)
- Longitudinal Bars With Ends Lapped Starting at the End Sections
- Lap Length lo = 300.00
- No FRP Wrapping
- New Material Sets type for the Jacket and Existing Material Sets type for the Existing Beam

DESCRIPTION

A jacketed beam section is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting chord rotation capacity and shear capacity with the FE analysis program SeismoBuild are compared with hand calculations.

The Chord Rotation Capacity is checked according to the tables 10-7, 10-8 and 10-9 and 10-19 of ASCE 41-17 and according to the equations (10-5) of ASCE 41-17 and (4.29) of D.Biskinis (2007). The employed equations are the (10-3) of ASCE 41-17, (22.5.1.1), (11.5.4.8), Table 11.5.4.6 and Table 22.5.5.1 of ACI 318-14 for Shear Capacity checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF = 0.90

Materials' Properties

<u>Jacket:</u> Concrete Elasticity, Ec = 26999.444 Steel Elasticity, Es = 200000.00

<u>For Chord rotation Calculations</u>: New material: Concrete Strength, fc = fcm = 33.00 New material: Steel Strength, fs = fsm 555.56

New material: Steel Strength, is = 1.25*fsm = 694.45

Existing Column: Concrete Elasticity, Ec = 21019.039 Steel Elasticity, Es = 200000.00

For Chord rotation Calculations: Existing material: Concrete Strength, fc = fcm = 20.00 Existing material: Steel Strength, fs = fsm = 444.44 Existing material: Steel Strength, fs = 1.25*fsm = 555.55

Member's Properties

External Height, H = 670.00External Width, W = 400.00Internal Height, H = 500.00Internal Width, W = 200.00Cover Thickness, c = 25.00Element Length, L = 3000.00Primary Member <u>For Shear Capacity Calculations</u>: New material of Secondary Member: Concrete Strength, fc = fc_lower_bound = 25.00 New material of Secondary Member: Steel Strength, fs = fs_lower_bound = 500.00

For Shear Capacity Calculations: Existing material of Primary Member: Concrete

Strength, fc = fc_lower_bound =16.00 Existing material of Primary Member: Steel Strength, fs = fs_lower_bound = 400.00 Ribbed Bars Ductile Steel Without Detailing for Earthquake Resistance (including stirrups not closed at 135°) Longitudinal Bars With Ends Lapped Starting at the End Sections Lap Length lo = 300.00 No FRP Wrapping

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

The beam member is modeled through an inelastic plastic-hinge force-based frame element (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 3.171. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 11.14

Check	Limit State	Edge	Local Axis	SeismoBuild 2018	Hand calculations
Chord Rotation Capacity	Immediate Occupancy	End	3	0.0068994	0.0068994
[rad]	Collapse Prevention	End	2	0.0276585	0.0276585
Shear Capacity [kN]	Immediate Occupancy	End	3	428.124	428.124

COMPUTER FILES

- ASCE_JBeam14.bpf
- Report_ASCE_JBeam14.pdf
Chapter 4 COMPARISON WITH INDEPENDENT HAND-CALCULATIONS – BEAM-COLUMN JOINTS CHECKS

As noted above, this chapter makes use of examples, and their corresponding independent handcalculations. A two storey 3D model with Typical Building Geometry (TBG) has been used for all the beam-columns joints examples. The plan views and the 3D model of the TBG are shown below:

1st floor Plan view of the building

2nd floor Plan view of the building

3D model of the building

EXAMPLE 1

SUCCINCT DATA

- Interior Joint: Beam B1- Column C2-Beam B2 of Floor 1
- Column Below: Rectangular Column section Primary Member Existing Material Sets type
- Beam B1: Beam section with effective width included Primary Member Existing Material Sets type
- Beam B2: Beam section with effective width included Primary Member Existing Material Sets type
- 1^{st} and 2^{nd} floor plan views are the same with TBG

DESCRIPTION

The 3D model is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting joints shear forces of the FE analysis program SeismoBuild are compared with hand calculations.

The employed equation is: (10-4) of ASCE 41-17 for Shear Capacity Checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF=1.00

Materials' Properties

Column Below:	Existing Material: fc_column = fc_lower_bound_column = 16,00
Beam B1:	Existing Material: fc_column = fc_lower_bound_column = 16,00
	Existing Material: fyd = fs_Lower_bound = 400,00
Beam B2:	Existing Material: fc_column = fc_lower_bound_column = 16,00
	Existing Material: fyd = fs_Lower_bound = 400,00

Members' Properties

Column Below

Section Height, H = 300.00 Section Width, W = 600.00

<u>Beam B1</u>

Section Height, H = 600.00 Section Width, W = 250.00 Beam B2

Section Height, H = 600.00 Section Width, W = 250.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

Beam and column members are modeled through the inelastic plastic-hinge force-based frame element type (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 4.1. Comparison	between SeismoBui	ld and hand-calculated	l results for EXAMPLE 1.1
Tuble 1.1. comparison	between beismobul	ia ana nana carcalatet	i i courto foi manon de 1.1

Check	Limit State	Capacity	
		SeismoBuild	Hand
		2018	calculations
Shear Forces [kN]	Life Safety	996.456	996.456

COMPUTER FILES

- ASCE_Joint1.bpf
- Report_ASCE_Joint1.pdf

EXAMPLE 2

SUCCINCT DATA

- Exterior Joint: Column C2-Beam B9 of Floor 1
- Column Below: Rectangular Column section Primary Member Existing Material Sets type
- Beam B9: Beam section with effective width included Primary Member Existing Material Sets type
- 1st and 2nd floor plan views are the same with TBG

DESCRIPTION

The 3D model is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting joints shear forces of the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF=1.00

Materials' Properties

Column Below:Existing Material: fc_column = fc_lower_bound_column = 16,00Beam B9:Existing Material: fc_beam = fc_lower_bound_beam = 16,00Existing Material: fyd = fs_Lower_bound = 400,00

Members' Properties

Column Below

Section Height, H = 300.00 Section Width, W = 600.00

Beam B9

Section Height, H = 600.00 Section Width, W = 250.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

Beam and column members are modeled through the inelastic plastic-hinge force-based frame element type (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 4.2. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 1.2

Check	Limit State	Capacity	
		SeismoBuild	Hand
		2018	calculations
Shear Forces [kN]	Life Safety	373.671	373.671

COMPUTER FILES

- ASCE_Joint2.bpf
- Report_ASCE_Joint2.pdf

EXAMPLE 3

- Interior Joint: Beam B1-Column C2-Beam B2 of Floor 1
- Column Below: L-Shaped Column section Primary Member Existing Material Sets type
- Column Above: Rectangular Column section Primary Member Existing Material Sets type
- Beam B1: Beam section with effective width included Primary Member Existing Material Sets type
- Beam B2: Beam section with effective width included Primary Member New Material Sets type
- 2nd floor plan view is the same with TBG

1st floor Plan view of the building

The 3D model is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting joints shear forces of the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF=1.00

Materials' Properties

Column Below:	Existing Material: fc_column = fc_lower_bound_column = 16,00
Beam B1:	Existing Material: fc_beam = fc_lower_bound_beam = 16,00
	Existing Material: fyd = fs_Lower_bound = 400,00
Beam B2:	New Material: fcd_beam = fc_lower_bound_beam= 25,00
	New Material: fyd = fs_Lower_bound = 500,00

Members' Properties

Column Below

Max Height, Hmax = 600.00 Min Height, Hmin = 250.00 Max Width, Wmax = 600.00 Min Width, Wmin = 250.00

Beam B1

Section Height, H = 500.00 Section Width, W = 250.00 Beam B2

Section Height, H = 600.00 Section Width, W = 250.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

Beam and column members are modeled through the inelastic plastic-hinge force-based frame element type (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 4.3. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 1.3

	Limit State	Capacity	
Check		SeismoBuild	Hand
		2018	calculations
Shear Forces [kN]	Collapse Prevention	996.456	996.456

COMPUTER FILES

- ASCE_Joint3.bpf
- Report_ASCE_Joint3.pdf

EXAMPLE 4

- Exterior Joint: Column C2-Beam B9 of Floor 1
- Column Below: T-Shaped Column section Primary Member Existing Material Sets type
- Column Above: Rectangular Column section Primary Member Existing Material Sets type
- Beam B9: Beam section with effective width included Primary Member Existing Material Sets type
- 2nd floor plan view is the same with TBG

1st floor Plan view of the building

The 3D model is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting joints shear forces of the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF=1.00

Materials' Properties

Column Below:Existing Material: fc_column = fc_lower_bound_column = 16,00Beam B9:Existing Material: fc_beam = fc_lower_bound_beam = 16,00Existing Material: fyd = fs_Lower_bound = 400,00

Members' Properties

Column Below

Max Height, Hmax = 600.00 Min Height, Hmin = 250.00 Max Width, Wmax = 750.00 Min Width, Wmin = 250.00 Eccentricity, Ecc = 250.00

<u>Beam B9</u> Section Height, H = 600.00 Section Width, W = 250.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

Beam and column members are modeled through the inelastic plastic-hinge force-based frame element type (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 4.4. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 1.4

Check	Limit State	Capacity	
		SeismoBuild	Hand
		2018	calculations
Shear Forces [kN]	Life Safety	747.342	747.342

COMPUTER FILES

- ASCE_Joint4.bpf
- Report_ASCE_Joint4.pdf

EXAMPLE 5

- Interior Joint: Beam B1-Column C2-Beam B2 of Floor 1
- Column Below: Circular Column section Primary Member New Material Sets type
- Column Above: Rectangular Column section Primary Member Existing Material Sets type
- Beam B1: Beam section with effective width included Primary Member Existing Material Sets type
- Beam B2: Beam section with effective width included Primary Member New Material Sets type
- 2nd floor plan view is the same with TBG

1st floor Plan view of the building

The 3D model is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting joints shear forces of the FE analysis program SeismoBuild are compared with hand calculations.

Units in N, mm

Knowledge Factor, KF=1.00

Materials' Properties

Column Below:	New Material: fc_column = fc_lower_bound_column = 25,00
Beam B1:	Existing Material: fc_beam = fc_lower_bound_beam = 16,00
	Existing Material: fyd = fs_Lower_bound = 400,00
Beam B2:	New Material: fc_column = fc_lower_bound_column = 25,00
	New Material: fyd = fs_Lower_bound = 500,00

Members' Properties

Column Below

Diameter, D = 400.00

Beam B1

Section Height, H = 550.00 Section Width, W = 350.00

<u>Beam B2</u>

Section Height, H = 600.00 Section Width, W = 250.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

Beam and column members are modeled through the inelastic plastic-hinge force-based frame element type (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 4.5. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 1.5

	Limit State	Capacity	
Check		SeismoBuild	Hand
		2018	calculations
Shear Forces [kN]	Immediate Occupancy	830.380	830.37805

COMPUTER FILES

- ASCE_Joint5.bpf
- Report_ASCE_Joint5.pdf

EXAMPLE 6

- Interior Joint: Beam B1-Column C2-Beam B2 of Floor 1
- Column Below: Jacketed Rectangular Column section Primary Member New Material Sets type for the Jacket and Existing Material Sets type for the Existing column
- Column Above: Rectangular Column section Primary Member Existing Material Sets type
- Beam B1: Beam section with effective width included Primary Member Existing Material Sets type
- Beam B2: Jacketed Beam section with effective width included Primary Member New Material Sets type for the Jacket and Existing Material Sets type for the Existing beam
 2nd floor plan view is the same with TBC
- 2nd floor plan view is the same with TBG

1st floor Plan view of the building

The 3D model is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting joints shear forces of the FE analysis program SeismoBuild are compared with hand calculations.

The employed equation is: (10-4) of ASCE 41-17 for Shear Capacity Checks GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF=1.00

Materials' Properties

)
)
0
0
)))

Members' Properties

Column Below

External Height, H = 600.00 External Width, W = 700.00 Internal Height, H = 400.00 Internal Width, W = 500.00

<u>Beam B1</u>

Section Height, H = 600.00 Section Width, W = 250.00

Beam B2

External Height, H = 670.00 External Width, W = 400.00 Internal Height, H = 500.00 Internal Width, W = 200.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

Beam and column members are modeled through the inelastic plastic-hinge force-based frame element type (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 4.6. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 1.6

	Limit State	Capacity	
Check		SeismoBuild	Hand
		2018	calculations
Shear Forces [kN]	Collapse Prevention	2092.6	2092.557

NOTE: The small difference in the Shear Forces values is due to the rounding of the shear capacity value exported to the Report.

COMPUTER FILES

- ASCE_Joint6.bpf
- Report_ASCE_Joint6.pdf

EXAMPLE 7

- Exterior Joint: Column C2-Beam B9 of Floor 1
- Column Below: Jacketed L-Shaped Column section Primary Member New Material Sets type for the Jacket and Existing Material Sets type for the Existing column
 Column Above:
- Column Above: Rectangular Column section Primary Member Existing Material Sets type
- Beam B9: Jacketed Beam section with effective width included Primary Member New Material Sets type for the Jacket and Existing Material Sets type for the Existing beam
- 2nd floor plan view is the same with TBG

1st floor Plan view of the building

The 3D model is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting joints shear forces of the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF=1.00

Materials' Properties

Column Below:Existing Material: fc_column = fc_lower_bound_column = 16,00
New Material: fc_column = fc_lower_bound_column = 25,00Beam B9:Existing Material: fc_beam = fc_lower_bound_beam = 16,00
New Material: fc_beam = fc_lower_bound_beam = 25,00
New Material: fyd_jacket = fs_Lower_bound_jacket = 500,00
Existing Material: fyd_core = fs_Lower_bound_core = 400,00

Members' Properties

Column Below

Max Height, Hmax = 800.00 Min Height, Hmin = 400.00 Max Width, Wmax = 800.00 Min Width, Wmin = 400.00

Beam B9

External Height, H = 670.00 External Width, W = 400.00

Internal Height, H = 500.00 Internal Width, W = 200.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

Beam and column members are modeled through the inelastic plastic-hinge force-based frame element type (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 4.7. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 1.7

Check	Limit State	Capacity	
		SeismoBuild	Hand
		2018	calculations
Shear Forces [kN]	Operational Level	1594.3	1594.329
Shear Forces [kN]	Operational Level	1594.3	1594.32

NOTE: The small difference in the Shear Forces values is due to the rounding of the shear capacity value exported to the Report.

COMPUTER FILES

- ASCE_Joint7.bpf
- Report_ASCE_Joint7.pdf

EXAMPLE 8

- Interior Joint: Beam B1-Column C2-Beam B2 of Floor 1
- Column Below: Jacketed T-Shaped Column section Primary Member New Material Sets type for the Jacket and Existing Material Sets type for the Existing column
- Column Above: Rectangular Column section Primary Member Existing Material Sets type
- Beam B1: Jacketed Beam section with effective width included Primary Member New Material Sets type for the Jacket and Existing Material Sets type for the Existing beam
 Beam B2: Jacketed Beam section with effective width included Primary Member New Material Sets type for the Jacket and Existing Material Sets type for the Existing beam

• 2nd floor plan view is the same with TBG

 $\mathbf{1}^{st}$ floor Plan view of the building

DESCRIPTION

The 3D model is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting joints shear forces of the FE analysis program SeismoBuild are compared with hand calculations.

The employed equation is: (10-4) of ASCE 41-17 for Shear Capacity Checks.

GEOMETRY AND PROPERTIES

<u>Units in N, mm</u>

Knowledge Factor, KF=1.00

Materials' Properties

Column Below:	Existing Material: fc_column = fc_lower_bound_column = 16,00
	New Material: fc_column = fc_lower_bound_column = 25,00
Beam B1:	Existing Material: fc_beam = fc_lower_bound_beam = 16,00
	New Material: fc_beam = fc_lower_bound_beam = 25,00
	New Material: fyd_jacket = fs_Lower_bound_jacket = 500,00
	Existing Material: fyd_core = fs_Lower_bound_core = 400,00
Beam B2:	Existing Material: fc_beam = fc_lower_bound_beam = 16,00
	New Material: fc_beam = fc_lower_bound_beam = 25,00
	New Material: fyd_jacket = fs_Lower_bound_jacket = 500,00
	Existing Material: fyd_core = fs_Lower_bound_core = 400,00

Members' Properties

Column Below

Max Height, Hmax = 750.00 Min Height, Hmin = 450.00 Max Width, Wmax = 950.00 Min Width, Wmin = 450.00 Eccentricity, Ecc = 250.00

Beam B1	Beam B2
External Height, H = 750.00 External Width, W = 450.00 Internal Height, H = 550.00 Internal Width, W = 250.00	External Height, H = 670.00 External Width, W = 400.00 Internal Height, H = 500.00 Internal Width, W = 200.00
NOTE: All the required values for hand calculations	may be exported to the Report by selecting the

member of interest in the Detailed Calculations(Annex) tab of the Print-out Options module.

MODELLING AND LOADING

Beam and column members are modeled through the inelastic plastic-hinge force-based frame element type (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 4.8. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 1.8

	Limit State	Capacity	
Check		SeismoBuild	Hand
		2018	calculations
Shear Forces [kN]	Life Safety	1490.0	1490.0

COMPUTER FILES

- ASCE_Joint8.bpf
- Report_ASCE_Joint8.pdf

EXAMPLE 9

- Exterior Joint: Column C2-Beam B9 of Floor 1
- Column Below: Jacketed Circular Column section Primary Member New Material Sets type for the Jacket and Existing Material Sets type for the Existing column
- Column Above: Rectangular Column section Primary Member Existing Material Sets type
- Beam B9: Jacketed Beam section with effective width included Primary Member New Material Sets type for the Jacket and Existing Material Sets type for the Existing beam
- 2nd floor plan view is the same with TBG

1st floor Plan view of the building

The 3D model is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting joints shear forces of the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF=0.75

Materials' Properties

Column Below:	Existing Material: fc_column = fc_lower_bound_column = 16,00
	New Material: fc_column = fc_lower_bound_column = 25,00
Beam B9:	Existing Material: fc_beam = fc_lower_bound_beam = 16,00
	New Material: fc_beam = fc_lower_bound_beam = 25,00
	New Material: fyd_jacket = fs_Lower_bound_jacket = 500,00
	Existing Material: fyd_core = fs_Lower_bound_core = 400,00

Members' Properties

Column Below

External Diameter, D = 500.00 Internal Diameter, D = 300.00

Beam B9

External Height, H = 670.00 External Width, W = 400.00 Internal Height, H = 500.00 Internal Width, W = 200.00

NOTE: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

Beam and column members are modeled through the inelastic plastic-hinge force-based frame element type (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 4.9. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 1.9

	Limit State	Capacity	
Check		SeismoBuild	Hand
		2018	calculations
Shear Forces [kN]	Life Safety	770.238	770.238

COMPUTER FILES

- ASCE_Joint9.bpf
- Report_ASCE_Joint9.pdf

EXAMPLE 10

- Interior Joint: Beam B1- Column C2-Beam B2 of Floor 1
- Column Below: Rectangular Column section Primary Member Existing Material Sets type
- Column Above: Rectangular Column section Secondary Member Existing Material Sets type
- Beam B1: Beam section with effective width included Primary Member Existing Material Sets type
 Beam B2:
- Beam section with effective width included Primary Member Existing Material Sets type
- 2nd floor plan view is the same with TBG

1st floor Plan view of the building

The 3D model is subjected to a Uniaxial without Eccentricity-Uniform Pushover Analysis in the +X direction.

The resulting joints shear forces of the FE analysis program SeismoBuild are compared with hand calculations.

<u>Units in N, mm</u>

Knowledge Factor, KF=0.90

Materials' Properties

Column Below:	Existing Material: fc_column = fc_lower_bound_column = 16,00
Beam B1:	Existing Material: fc_beam = fc_lower_bound_beam = 16,00
	Existing Material: fyd = fs_Lower_bound = 400,00
Beam B2:	Existing Material: fc_beam = fc_lower_bound_beam = 16,00
	Existing Material: fvd = fs Lower bound = 400.00

Members' Properties

Column Below

Section Height, H = 300.00 Section Width, W = 600.00

<u>Beam B1</u>

Section Height, H = 600.00

Sectio

Section Width, W = 250.00

Section Height, H = 600.00 Section Width, W = 250.00

Beam B2

NOTE 1: If the rotation angle between beam B2 and column C2(φ°) is less than 45° then the beam B2 is taken as horizontal. Else, if $\varphi > 45^{\circ}$ then the beam B2 is taken as vertical.

NOTE 2: All the required values for hand calculations may be exported to the Report by selecting the member of interest in the *Detailed Calculations(Annex)* tab of the Print-out Options module.

MODELLING AND LOADING

_ _ _ _ _ _ _ _ _ _

Beam and column members are modeled through the inelastic plastic-hinge force-based frame element type (infrmFBPH).

ANALYSIS TYPE

Pushover analysis (Uniaxial without Eccentricity-Uniform +X)

RESULTS COMPARISON

The most significant results are compared in the table below:

Table 4.10. Comparison between SeismoBuild and hand-calculated results for EXAMPLE 1.10

	Limit State	Capacity	
Check		SeismoBuild	Hand
		2018	calculations
Shear Forces [kN]	Immediate Occupancy	871.967	871.967

COMPUTER FILES

- ASCE_Joint10.bpf
- Report_ASCE_Joint10.pdf