OpenSeesPy Documentation
Release 1.0.0b1

Minjie Zhu

Oct 26, 2018

Installation

1 Author 3

OpenSeesPy Documentation, Release 1.0.0b1

Note: If you use OpenSeesPy, I would like very much to hear from you. A short email to zhum @oregonstate.edu de-
scribing who you are and how you use OpenSeesPy will mean a lot to me. I can justify spending time on improvements
that I hope will benefit you.

Note: The OpenSeesPy library is still in beta version. Please send any questions to zhum @oregonstate.edu or github
issues.

You are very welcome to contribute to OpenSeesPy with new command documents and examples by sending pull
requests through github pulls.

OpenSeesPy is a Python 3 interpreter of OpenSees. A minimum script is shown below:

AHAFHAFHAHAFHARAFAAHAFAARAFAARAFAARAFAFEAS
If installed directly with library files
import sys

for Linux
sys.path.append('/path/to/OpenSeesPy")

for Windows
sys.path.append('C:/path/to/OpenSeesPy")

from opensees import x
HAFHAFFHAAFHAFFRAFFHAFFAAFHAAFEAAFRAAFEAAHS

#HHAAFRAAFRAAFAAARAAF RS AR SRS F A AR S A
If installed with PyPi

from openseespy.opensees import =«
S i il il

Using OpenSees ...

wipe before exiting
wipe ()

Most of OpenSeesPy commands have the same syntax and arguments as the OpenSees Tcl commands. The conversion
from Tcl to Python is easy and straightforward as demonstrated with commands below.

Installation 1

mailto:zhum@oregonstate.edu
mailto:zhum@oregonstate.edu
https://github.com/zhuminjie/OpenSeesPyDoc/issues
https://github.com/zhuminjie/OpenSeesPyDoc/issues
https://github.com/zhuminjie/OpenSeesPyDoc/pulls
https://github.com/zhuminjie/OpenSeesPyDoc
https://docs.python.org/3/
http://opensees.berkeley.edu/
https://github.com/zhuminjie/OpenSeesPyDoc
http://opensees.berkeley.edu/wiki/index.php/Command_Manual

OpenSeesPy Documentation, Release 1.0.0b1

2 Installation

CHAPTER 1

Author

Minjie Zhu <zhum @ oregonstate.edu>

Faculty Research Assistant
Civil and Construction Engineering
Oregon State University

1.1 Install OpenSeesPy in Windows:

1.1.1 Install ActiveStateTcl 8.5

Check the Tcl version

OpenSeesPy Documentation, Release 1.0.0b1

€ C\Tchbin\tclsh8s.exe

% oputs $tcl_wersion

1.1.2 Install Python 3.6 Windows or Anaconda 5.0 Windows

Note: 64bit Python 3.6 version is required!

Both work, but Anaconda comes with many libraries and editors

Check the python version

F® Python 3.6 (84-bit)

rersion infod
rsion_info{major=3, minor=6, micro=3, releaselewel="final", serisl=8)

An anaconda environment

Chapter 1. Author

OpenSeesPy Documentation, Release 1.0.0b1

@ Spyder (Python 2.6) - O X

File Edit Search Source Run Debug Consoles Projects Taals Wiew Help

OsB%“Ee pEHBDPE = B BX £ 2 €3 creon s

Editor - CiiProgramDataluntitledl.py & X Help F x
3 untitledt.py E] 4 Source Console ™ Obiectl V| & %
1# G -
o
El
4
5 author : o
you can get help of any object by pressing
a ? Ctrl+1 in front of it, either on the Editor or the

Console.

Help can also be shown automatically after
writing a left parenthesis next to an object. vou
can activate this behavior in Arefarances > Hals w

Yariable explorer File explarer Help

IPython consale J X
[consols 1ia B | -3
I e]T o

In [1]: import sys

In [2]: print(sys.wersion_info)
sys.version_infe(major=3, minor=6, micro=2, releaselevel="final®, serial=@)

In [2]:

TPython console Histery log
Permissions: RW End-of-lines: CRLF Encoding: UTF-8 Line: 7 Colurmn: 1 Memors 21 %

1.1.3 Download OpenSeesPy Windows Library

Two files, opensees.pyd and LICENSE. rst, are included in the zip file. Put the library file opensees.pydin
a directoy, which path should be copied to

sys.path.append('C:/path/to/OpenSeesPy')

1.2 Install OpenSeesPy in Linux:

1.2.1 Install Tcl 8.5

Usually, the Tcl 8.5 is already installed in a Linux system.
Check the Tcl version

1.2. Install OpenSeesPy in Linux: 5

OpenSeesPy Documentation, Release 1.0.0b1

File Edit View Search Terminal Help

puts $tel wersion
-3

I R I I I R R I SR T R

1.2.2 Install Python 3.6 Linux or Anaconda 5.0 Linux

Note: 64bit Python 3.6 version is required!

Both work, but Anaconda comes with many libraries and editors

Check the python version

6 Chapter 1. Author

OpenSeesPy Documentation, Release 1.0.0b1

File Edit View Search Terminal Help

Python 3.6.3 |Anaconda, Inc.| {(default, Oct 13 2017, 12:02:439)
[Gee 7.2.0] on linux
Type "help", "copyright"™, "credits" or "license" for more information.
2>

>

>3

e e

>

>

>3

e e

2>

S

>3

e e

>

>

>3

e e

-

>

>3

e e

>>> |

An anaconda environment

File Edit Search Source Run Debug Consoles Projects Tools View Help

D | — Bh H @ | 2 @ E' | 13 e Mi L = = » B x)’ a &= =» nfs/stakjusers/zhum v|b L
Editor - /nfs/stak/users/zhum/untitled0.py ® Help £
|:l| untitled0.py 3¢ ‘ o Source Console ~ | Object | -] & @

Created on Wed Jan 31 16:17:43 2018

Here you can get help of any object by
i pressing Ctrl+1 in front of it, either on
the Editor or the Console.

@author: zhum

WO

Help can also be shown automatically
after writing a left parenthesis next to an

ahinck Voo con ackiuata baic baboiac in
Wariable explorer File explorer | Help |

IPython console (=]
o Console 1JA -3

Python 3.6.3 |Anaconda, Inc.| (default, Oct 13 2017, 12:02:49)
Type "copyright", "credits" or "license" for more information.

IPython 6.1.0 -- An enhanced Interactive Python.

In [1]: |

| IPython console | History log
Permissions: RW End-of-lines: LF Encoding: ASCIl Line: 9 Column: 1 Memory: 40 %

1.2. Install OpenSeesPy in Linux: 7

OpenSeesPy Documentation, Release 1.0.0b1

1.2.3 Download OpenSeesPy Linux Library

Two files, opensees.so and LICENSE. rst, are included in the zip file. Put the library file opensees.soina
directoy, which path should be copied to

’sys.path.append('/path/to/OpenSeesPy')

1.3 Install OpenSeesPy though PyPi

You should have Python 3.6 or higher installed already.

Use following command to install

’pip install openseespy ‘

and import OpenSeesPy as

’import openseespy.opensees as ops ‘

1.4 Model Commands

The model or domain in OpenSees is a collection (an aggregation in object-oriented terms) of elements, nodes, single-
and multi-point constraints and load patterns. It is the aggregation of these components which define the type of model
that is being analyzed.

1.4.1 model command

model (’basic’, -ndm’, ndm, ’-ndf’, ndf=ndm*(ndm+1)/2)
Set the default model dimensions and number of dofs.

ndm (int) | number of dimensions (1,2,3)
ndf (int) | number of dofs (optional)

1.4.2 element commands

element (eleType, eleTag, *eleNodes, *eleArgs)
Create a OpenSees element.

eleType (str) element type

eleTag (int) element tag.

eleNodes (list (int)) | alist of element nodes, must be preceded with *.
eleArgs (list) a list of element arguments, must be preceded with x.

For example,

8 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

OpenSeesPy Documentation, Release 1.0.0b1

eleType = 'truss'
eleTag = 1
eleNodes = [iNode, jNode]

eleArgs = [A, matTag]
element (eleType, eleTag, xeleNodes, xeleArgs)

The following contain information about available eleType:

zeroLength Element

element (’zeroLength’, eleTag, *eleNodes, '-mat’, *matTags, '-dir’, *dirs[, "-doRayleigh’, rFlagzO][, -

orient’, *vecx, *vecyp |)
This command is used to construct a zeroLength element object, which is defined by two nodes at the same

location. The nodes are connected by multiple UniaxialMaterial objects to represent the force-deformation
relationship for the element.

eleTag (int) unique element object tag

eleNodes (list (int)) a list of two element nodes

matTags (list (int)) a list of tags associated with previously-defined Uni-

axialMaterials

dirs (list (int)) a list of material directions:

* 1,2,3 - translation along local x,y,z axes, re-
spectively;

* 4,5,6 - rotation about local x,y,z axes, respec-
tively

vecx (list (float)) a list of vector components in global coordinates

defining local x-axis (optional)

vecyp (list (float)) a list of vector components in global coordinates

defining vector yp which lies in the local x-y plane

for the element. (optional)

rFlag (float) optional, default = 0

* rFlag = 0 NO RAYLEIGH DAMPING (de-
fault)

* rFlag =1 include rayleigh damping

Note: If the optional orientation vectors are not specified, the local element axes coincide with the global axes.
Otherwise the local z-axis is defined by the cross product between the vectors x and yp vectors specified on the
command line.

See also:

Notes

zeroLengthND Element

element (’zeroLengthND’, eleTag, *eleNodes, matTag[, uniTag] [, "-orient’, *vecx, vecyp])
This command is used to construct a zeroLengthND element object, which is defined by two nodes at the same
location. The nodes are connected by a single NDMaterial object to represent the force-deformation relationship
for the element.

1.4. Model Commands 9

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/ZeroLength_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag unique element object tag

(int)

eleNodes| alist of two element nodes

(list (int))

matTag tag associated with previously-defined ndMaterial object

(int)

uniTag tag associated with previously-defined UniaxialMaterial object which may be used to represent

(int) uncoupled behavior orthogonal to the plane of the NDmaterial response. SEE NOTES 2 and
3.

vecx (list | alist of vector components in global coordinates defining local x-axis (optional)

(float))

vecyp a list of vector components in global coordinates defining vector yp which lies in the local x-y

(list plane for the element. (optional)

(float))

Note:

. The zeroLengthND element only represents translational response between its nodes

If the NDMaterial object is of order two, the response lies in the element local x-y plane and the UniaxialMaterial
object may be used to represent the uncoupled behavior orthogonal to this plane, i.e. along the local z-axis.

If the NDMaterial object is of order three, the response is along each of the element local exes.

If the optional orientation vectors are not specified, the local element axes coincide with the global axes. Oth-
erwise the local z-axis is defined by the cross product between the vectors x and yp vectors specified on the

command line.

The valid queries to a zero-length element when creating an ElementRecorder object are ‘force’, ‘deformation’,
and ‘material matArgl matArg2 ...’

See also:

Notes

zeroLengthSection Element

element (’zeroLengthSection’, eleTag, *eleNodes, secTag[, ‘-orient’, *vecx, *vecyp] [, "-doRayleigh’, rFlag

This command is used to construct a zero length element object, which is defined by two nodes at the same
location. The nodes are connected by a single section object to represent the force-deformation relationship for

the element.

10

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/ZeroLengthND_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int)

unique element object tag

eleNodes (list (int))

a list of two element nodes

secTag (int)

tag associated with previously-defined Section ob-
ject

vecx (list (float))

a list of vector components in global coordinates
defining local x-axis (optional)

vecyp (list (float))

a list of vector components in global coordinates
defining vector yp which lies in the local x-y plane
for the element. (optional)

rFlag (float)

optional, default =0
* rFlag = 0 NO RAYLEIGH DAMPING (de-
fault)
e rFlag =1 include rayleigh damping

See also:

CoupledZeroLength Element

element (’CoupledZeroLength’, eleTag, *eleNodes, dirnl, dirn2, matTag[, rFlag=1])

eleTag (int)

unique element object tag

eleNodes (list (int))

a list of two element nodes

mat Tag (float)

tags associated with previously-defined UniaxialMa-
terial

dirl dir2 (int)

the two directions, 1 through ndof.

rFlag (float)

optional, default =0
* rFlag = 0 NO RAYLEIGH DAMPING (de-
fault)
* rFlag =1 include rayleigh damping

See also:

zeroLengthContact Element

element (’zeroLengthContact2D’, eleTag, *eleNodes, Kn, Kt, mu, ’-normal’, Nx, Ny)

This command is used to construct a zeroLengthContact2D element, which is Node-to-node frictional contact
element used in two dimensional analysis and three dimensional analysis:

eleTag (int)

unique element object tag

eleNodes (list (int))

a list of a slave and a master nodes

Kn (float) Penalty in normal direction
Kt (float) Penalty in tangential direction
mu (float) friction coefficient

1.4. Model Commands

11

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/ZeroLengthSection_Element
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
dhttp://opensees.berkeley.edu/wiki/index.php/CoupledZeroLength_Element
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

element (’zeroLengthContact3D’, eleTag, *eleNodes, Kn, Kt, mu, c, dir)
This command is used to construct a zeroLengthContact3D element, which is Node-to-node frictional contact
element used in two dimensional analysis and three dimensional analysis:

eleTag (int) unique element object tag

eleNodes (list (int)) a list of a slave and a master nodes

Kn (float) Penalty in normal direction

Kt (float) Penalty in tangential direction

mu (float) friction coefficient

c (float) cohesion (not available in 2D)

dir (int) Direction flag of the contact plane (3D), it can be:

* 1 Out normal of the master plane pointing to
+X direction

e 2 Out normal of the master plane pointing to
+Y direction

* 3 Out normal of the master plane pointing to
+Z direction

See also:
Notes
zeroLengthContactNTS2D

element (’zeroLengthContactNTS2D’, eleTag, ’-sNdNum’, sNdNum, ’-mNdNum’, mNdNum, ’-Nodes’,
*Nodes, Kn, kt, phi)

eleTag (int) unique element object tag

sNdNum (int) Number of Slave Nodes

mNdNum (int) Number of Master nodes

Nodes (list (int)) | Slave and master node tags respectively
Kn (float) Penalty in normal direction

Kt (float) Penalty in tangential direction

phi (float) Friction angle in degrees

Note:

1. The contact element is node-to-segment (NTS) contact. The relation follows Mohr-Coulomb frictional law:
T = N x tan(¢), where T is the tangential force, N is normal force across the interface and ¢ is friction angle.

2. For 2D contact, slave nodes and master nodes must be 2 DOF and notice that the slave and master nodes must
be entered in counterclockwise order.

3. The resulting tangent from the contact element is non-symmetric. Switch to the non-symmetric matrix solver if
convergence problem is experienced.

4. As opposed to node-to-node contact, predefined normal vector for node-to-segment (NTS) element is not re-
quired because contact normal will be calculated automatically at each step.

5. contact element is implemented to handle large deformations.

See also:

12 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
http://opensees.berkeley.edu/wiki/index.php/ZeroLengthContact_Element
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

Notes

zeroLengthinterface2D

element (’zeroLengthlnterface2D’, eleTag, -sNdNum’, sNdNum, *-mNdNum’, mNdNum, ’-dof’, sdof, mdof,
"-Nodes’, *Nodes, Kn, kt, phi)

eleTag (int) unique element object tag
sNdNum (int) Number of Slave Nodes
mNdNum (int) Number of Master nodes

sdof, mdof (int) | Slave and Master degree of freedom
Nodes (list (int)) | Slave and master node tags respectively

Kn (float) Penalty in normal direction
Kt (float) Penalty in tangential direction
phi (float) Friction angle in degrees

Note:

1. The contact element is node-to-segment (NTS) contact. The relation follows Mohr-Coulomb frictional law:
T = N x tan(¢), where T is the tangential force, N is normal force across the interface and ¢ is friction angle.

2. For 2D contact, slave nodes and master nodes must be 2 DOF and notice that the slave and master nodes must
be entered in counterclockwise order.

3. The resulting tangent from the contact element is non-symmetric. Switch to the non-symmetric matrix solver if
convergence problem is experienced.

4. As opposed to node-to-node contact, predefined normal vector for node-to-segment (NTS) element is not re-
quired because contact normal will be calculated automatically at each step.

5. contact element is implemented to handle large deformations.

See also:

Notes

zeroLengthlmpact3D

element (’zeroLengthlmpact3D’, eleTag, *eleNodes, direction, initGap, frictionRatio, Kt, Kn, Kn2, Delta_y,

cohesion)
This command constructs a node-to-node zero-length contact element in 3D space to simulate the im-

pact/pounding and friction phenomena.

1.4. Model Commands 13

http://opensees.berkeley.edu/wiki/index.php/ZeroLengthContactNTS2D
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/ZeroLengthInterface2D

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int) unique element object tag
eleNodes (list (int)) a list of a slave and a master nodes
direction (int)

* 1 if out-normal vector of master plane points to
+X direction

* 2 if out-normal vector of master plane points to
+Y direction

* 3 if out-normal vector of master plane points to
+Z direction

initGap (float) Initial gap between master plane and slave plane

frictionRatio (float) Friction ratio in two tangential directions (parallel to
master and slave planes)

Kt (float) Penalty in two tangential directions

Kn (float) Penalty in normal direction (normal to master and
slave planes)

Kn2 (float) Penalty in normal direction after yielding based on
Hertz impact model

Delta_y (float) Yield deformation based on Hertz impact model

cohesion (float) Cohesion, if no cohesion, it is zero

Note:

1. This element has been developed on top of the “zeroLengthContact3D”. All the notes available in “zeroLength-
Contact3D” wiki page would apply to this element as well. It includes the definition of master and slave nodes,
the number of degrees of freedom in the domain, etc.

2. Regarding the number of degrees of freedom (DOF), the end nodes of this element should be defined in 3DOF
domain. For getting information on how to use 3DOF and 6DOF domain together, please refer to OpenSees
documentation and forums or see the zip file provided in the EXAMPLES section below.

3. This element adds the capabilities of “ImpactMaterial” to “zeroLengthContact3D.”

4. For simulating a surface-to-surface contact, the element can be defined for connecting the nodes on slave surface
to the nodes on master surface.

5. The element was found to be fast-converging and eliminating the need for extra elements and nodes in the
modeling process.

See also:

Notes

Truss Element

This command is used to construct a truss element object. There are two ways to construct a truss element object:

element ('Truss’, eleTag, *eleNodes, A, matTag[, ’-rho’, rho] [-cMass’, cFlag][, "-doRayleigh’, rFlag])
One way is to specify an area and a UniaxialMaterial identifier:

element ('TrussSection’, eleTag, *eleNodes, A, secTag[, "-rho’, rho][, -cMass’, cFlag][, "-doRayleigh’,

rFlag])
the other is to specify a Section identifier:

14 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/ZeroLengthImpact3D

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int) unique element object tag

eleNodes (list (int)) a list of two element nodes

A (float) cross-sectional area of element

matTag (int) tag associated with previously-defined UniaxialMa-
terial

secTag (int) tag associated with previously-defined Section

rho (float) mass per unit length, optional, default = 0.0

cFlag (float) consistent mass flag, optional, default = 0

e cFlag =0 lumped mass matrix (default)
e cFlag =1 consistent mass matrix

rFlag (float) Rayleigh damping flag, optional, default =0
* rFlag = 0 NO RAYLEIGH DAMPING (de-
fault)

* rFlag =1 include Rayleigh damping

Note:

1. The truss element DOES NOT include geometric nonlinearities, even when used with beam-columns utilizing
P-Delta or Corotational transformations.

2. When constructed with a UniaxialMaterial object, the truss element considers strain-rate effects, and is thus
suitable for use as a damping element.

3. The valid queries to a truss element when creating an ElementRecorder object are ‘axialForce, ‘forces,” ‘lo-
calForce’, deformations,” ‘material matArgl matArg2...,” ‘section sectArgl sectArg2...” There will be more
queries after the interface for the methods involved have been developed further.

See also:

Notes

Corotational Truss Element

This command is used to construct a corotational truss element object. There are two ways to construct a corotational
truss element object:

element (’corotTruss’, eleTag, *eleNodes, A, matTag[, ’-rho’, rho][, -cMass’, cFlag][, "-doRayleigh’,

rFlag])
One way is to specify an area and a UniaxialMaterial identifier:

element (’corotTrussSection’, eleTag, *eleNodes, A, secTag[, -rho’, rho] [, -cMass’, cFlag] [, -
doRayleigh’, rFlag])
the other is to specify a Section identifier:

1.4. Model Commands 15

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Truss_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int)

unique element object tag

eleNodes (list (int))

a list of two element nodes

A (float)

cross-sectional area of element

matTag (int)

tag associated with previously-defined UniaxialMa-
terial

secTag (int)

tag associated with previously-defined Section

rho (float)

mass per unit length, optional, default = 0.0

cFlag (float)

consistent mass flag, optional, default = 0
e cFlag =0 lumped mass matrix (default)
e cFlag =1 consistent mass matrix

rFlag (float)

Rayleigh damping flag, optional, default =0
* rFlag = 0 NO RAYLEIGH DAMPING (de-
fault)
* rFlag =1 include Rayleigh damping

Note:

1. When constructed with a UniaxialMaterial object, the corotational truss element considers strain-rate effects,

and is thus suitable for use as a damping element.

2. The valid queries to a truss element when creating an ElementRecorder object are ‘axialForce,” ‘stiff, defor-

¢

mations,” ‘material matArgl matArg2...,

section sectArgl sectArg2...’ There will be more queries after the

interface for the methods involved have been developed further.

3. CorotTruss DOES NOT include Rayleigh damping by default.

See also:

Notes

Elastic Beam Column Element

This command is used to construct an elasticBeamColumn element object. The arguments for the construction of an
elastic beam-column element depend on the dimension of the problem, ndm:

element (’elasticBeamColumn’, elelag, *eleNodes, A, E, Iz, transzag[, "-mass’, massDens] [, -cMass’])

For a two-dimensional problem

element (’elasticBeamColumn’, eleTag, *eleNodes, A, E, G, J, Iy, Iz, transzag[, -mass’, massDens] [, -

cMass’])
For a three-dimensional problem

5

16

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Corotational_Truss_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int) unique element object tag

eleNodes (list (int)) | a list of two element nodes

A (float) cross-sectional area of element

E (float) Young’s Modulus

G (float) Shear Modulus

J (float) torsional moment of inertia of cross section

Iz (float) second moment of area about the local z-axis

Iy (float) second moment of area about the local y-axis

transfTag (int) identifier for previously-defined coordinate-transformation (CrdTransf) object

massDens (float) element mass per unit length (optional, default = 0.0)

'—cMass' (str) to form consistent mass matrix (optional, default = lumped mass matrix)
See also:
Notes

Elastic Beam Column Element with Stiffness Modifiers

This command is used to construct a ModElasticBeam2d element object. The arguments for the construction of an
elastic beam-column element with stiffness modifiers is applicable for 2-D problems. This element should be used for
modelling of a structural element with an equivalent combination of one elastic element with stiffness-proportional
damping, and two springs at its two ends with no stiffness proportional damping to represent a prismatic section. The
modelling technique is based on a number of analytical studies discussed in Zareian and Medina (2010) and Zareian
and Krawinkler (2009) and is utilized in order to solve problems related to numerical damping in dynamic analysis of
frame structures with concentrated plasticity springs.

element ('ModElasticBeam2d’, eleTag, *eleNodes, A, E, Iz, K11, K33, K44, transﬁag[, -mass’, massDens

][’-cMass’])

eleTag (int) unique element object tag

eleNodes (list (int)) | alist of two element nodes

A (float) cross-sectional area of element

E (float) Young’s Modulus

Iz (float) second moment of area about the local z-axis

K11 (float) stiffness modifier for translation

K33 (float) stiffness modifier for translation

K44 (float) stiffness modifier for rotation

transfTag (int) identifier for previously-defined coordinate-transformation (CrdTransf) object

massDens (float) element mass per unit length (optional, default = 0.0)

'—cMass"' (str) to form consistent mass matrix (optional, default = lumped mass matrix)
See also:
Notes

Elastic Timoshenko Beam Column Element

This command is used to construct an ElasticTimoshenkoBeam element object. A Timoshenko beam is a frame
member that accounts for shear deformations. The arguments for the construction of an elastic Timoshenko beam
element depend on the dimension of the problem, ndm:

1.4. Model Commands 17

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
http://opensees.berkeley.edu/wiki/index.php/Elastic_Beam_Column_Element
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
http://opensees.berkeley.edu/wiki/index.php/Elastic_Beam_Column_Element_with_Stiffness_Modifiers

OpenSeesPy Documentation, Release 1.0.0b1

element (’ElasticTimoshenkoBeam’, eleTag, *eleNodes, E, G, A, Iz, Avy, transﬂ"ag[, -mass’, massDens][,
-cMass])
For a two-dimensional problem:

element (’ElasticTimoshenkoBeam’, elelag, *eleNodes, E, G, A, Iz, Jx, Iy, Iz, Avy, Avz, transzag[, "-mass’,

massDens] [-cMass])
For a three-dimensional problem:

eleTag (int) unique element object tag

eleNodes (list (int)) | alist of two element nodes

E (float) Young’s Modulus

G (float) Shear Modulus

A (float) cross-sectional area of element

Jx (float) torsional moment of inertia of cross section

Iy (float) second moment of area about the local y-axis

Iz (float) second moment of area about the local z-axis

Avy (float) Shear area for the local y-axis

Avz (float) Shear area for the local z-axis

transfTag (int) identifier for previously-defined coordinate-transformation (CrdTransf) object

massDens (float) element mass per unit length (optional, default = 0.0)

'—cMass"' (str) to form consistent mass matrix (optional, default = lumped mass matrix)
See also:
Notes

Beam With Hinges Element

This command is used to construct a forceBeamColumn element object, which is based on the non-iterative (or it-
erative) flexibility formulation. The locations and weights of the element integration points are based on so-called
plastic hinge integration, which allows the user to specify plastic hinge lenghts at the element ends. Two-point Gauss
integration is used on the element interior while two-point Gauss-Radau integration is applied over lengths of 4Lpl
and 4Lp]J at the element ends, viz. “modified Gauss-Radau plastic hinge integration”. A total of six integration points
are used in the element state determination (two for each hinge and two for the interior).

Users may be familiar with the beamWithHinges command format (see below); however, the format shown here allows
for the simple but important case of using a material nonlinear section model on the element interior. The previous
beamWithHinges command constrained the user to an elastic interior, which often led to unconservative estimates of
the element resisting force when plasticity spread beyond the plastic hinge regions in to the element interior.

The advantages of this new format over the previous beamWithHinges command are
* Plasticity can spread beyond the plastic hinge regions
* Hinges can form on the element interior, e.g., due to distributed member loads

To create a beam element with hinges, one has to use a forceBeamColumn element with following
beamIntegration().

Note:

e 'HingeRadau' —two-point Gauss-Radau applied to the hinge regions over 4Lpl and 4LpJ (six element inte-
gration points)

* 'HingeRadauTwo' — two-point Gauss-Radau in the hinge regions applied over Lpl and LpJ (six element
integration points)

18 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
http://opensees.berkeley.edu/wiki/index.php/Elastic_Timoshenko_Beam_Column_Element

OpenSeesPy Documentation, Release 1.0.0b1

e 'HingeMidpoint ' — midpoint integration over the hinge regions (four element integration points)

* 'HingeEndpoint' —endpoint integration over the hinge regions (four element integration points)

See also:

For more information on the behavior, advantages, and disadvantages of these approaches to plastic hinge integration,
see

Scott, M.H. and G.L. Fenves. “Plastic Hinge Integration Methods for Force-Based Beam-Column Elements”, Journal
of Structural Engineering, 132(2):244-252, February 2006.

Scott, M.H. and K.L. Ryan. “Moment-Rotation Behavior of Force-Based Plastic Hinge Elements”, Earthquake Spec-
tra, 29(2):597-607, May 2013.

The primary advantages of HingeRadau are
* The user can specify a physically meaningful plastic hinge length
* The largest bending moment is captured at the element ends
* The exact numerical solution is recovered for a linear-elastic prismatic beam

» The characteristic length is equal to the user-specified plastic hinge length when deformations localize at the
element ends

while the primary disadvantages are

* The element post-yield response is too flexible for strain-hardening section response (consider using HingeR-
adauTwo)

* The user needs to know the plastic hinge length a priori (empirical equations are available)
dispBeamColumn

element (’'dispBeamColumn’, eleTag, iNode, jNode, transflag, integrationTag, -cMass’, -mass’, mass=0.0)
Create a ForceBeamColumn element.

eleTag (int) tag of the element

iNode (int) tag of node i

JNode (int) tag of node j

transfTag (int) tag of transformation

integrationTag tag of beamIntegration ()

(int)

'-cMass' to form consistent mass matrix (optional, default = lumped mass matrix)

mass (float) element mass density (per unit length), from which a lumped-mass matrix is
formed (optional)

forceBeamColumn

element (forceBeamColumn’, eleTag, iNode, jNode, transflag, integrationlag, ’-iter’, maxlter=10, tol=1e-

12, ’-mass’, mass=0.0)
Create a ForceBeamColumn element.

1.4. Model Commands 19

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int) tag of the element

iNode (int) tag of node i

jNode (int) tag of node j

transfTag (int) tag of transformation

integrationTag tag of beamIntegration ()

(int)

maxIter (float) maximum number of iterations to undertake to satisfy element compatibility (op-
tional)

tol (float) tolerance for satisfaction of element compatibility (optional)

mass (float) element mass density (per unit length), from which a lumped-mass matrix is
formed (optional)

Flexure-Shear Interaction Displacement-Based Beam-Column Element

This command is used to construct a dispBeamColumnInt element object, which is a distributed-plasticity,
displacement-based beam-column element which includes interaction between flexural and shear components.

element ('dispBeamColumnint’, eleTag, *eleNodes,numintgrPts, secTag, transflag, cRot[’-mass’, mass-

Dens])
eleTag unique element object tag
(int)
eleNodes a list of two element nodes
(list (int))
numIntgrPt|snumber of integration points along the element.
(int)
secTag identifier for previously-defined section object
(int)
transfTag | identifier for previously-defined coordinate-transformation (CrdTransf) object
(int)
cRot (float) | identifier for element center of rotation (or center of curvature distribution). Fraction of the
height distance from bottom to the center of rotation (0 to 1)
massDens element mass density (per unit length), from which a lumped-mass matrix is formed (op-
(float) tional, default=0.0)
See also:

Notes

MVLEM - Multiple-Vertical-Line-Element-Model for RC Walls

The MVLEM element command is used to generate a two-dimensional Multiple-Vertical-Line-Element-Model
(MVLEM; Vulcano et al., 1988; Orakcal et al., 2004, Kolozvari et al., 2015) for simulation of flexure-dominated
RC wall behavior. A single model element incorporates six global degrees of freedom, three of each located at the
center of rigid top and bottom beams, as illustrated in Figure 1a. The axial/flexural response of the MVLEM is sim-
ulated by a series of uniaxial elements (or macro-fibers) connected to the rigid beams at the top and bottom (e.g.,
floor) levels, whereas the shear response is described by a shear spring located at height ch from the bottom of the
wall element (Figure 1a). Shear and flexural responses of the model element are uncoupled. The relative rotation
between top and bottom faces of the wall element occurs about the point located on the central axis of the element at
height ch (Figure 1b). Rotations and resulting transverse displacements are calculated based on the wall curvature, de-
rived from section and material properties, corresponding to the bending moment at height ch of each element (Figure

20 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Flexure-Shear_Interaction_Displacement-Based_Beam-Column_Element

OpenSeesPy Documentation, Release 1.0.0b1

1b). A value of ¢c=0.4 was recommended by Vulcano et al. (1988) based on comparison of the model response with
experimental results.

element ('MVLEM’, elelag, Dens, *eleNodes, m, c, ’-thick’, *Thicknesses, -width’, *Widths, ’-rho’, *Rein-
forcing_ratios, -matConcrete’, *Concrete_tags, -matSteel’, *Steel_tags, "-matShear’, Shear_tag)

eleTag (int) unique element object tag
Dens (float) Wall density
eleNodes (list (int)) a list of two element nodes
m (int) Number of element macro-fibers
c (float) Location of center of rotation from the iNode, ¢ = 0.4 (recommended)
Thicknesses (list | a list of m macro-fiber thicknesses
(float))
Widths (list (float)) a list of m macro-fiber widths
Reinforcing_ratios | a list of m reinforcing ratios corresponding to macro-fibers; for each fiber:
(list (float)) rho; = Asi/Agross,i(1 <i<m)
Concrete _tags (list | alist of m uniaxialMaterial tags for concrete
(int))
Steel_tags (list (int)) a list of m uniaxialMaterial tags for steel
Shear_tag (int) Tag of uniaxialMaterial for shear material
See also:

Notes

SFI MVLEM - Cyclic Shear-Flexure Interaction Model for RC Walls

The SFI_MVLEM command is used to construct a Shear-Flexure Interaction Multiple-Vertical-Line-Element Model
(SFI-MVLEM, Kolozvari et al., 2015a, b, ¢), which captures interaction between axial/flexural and shear behavior of
RC structural walls and columns under cyclic loading. The SFI_MVLEM element (Figure 1) incorporates 2-D RC
panel behavior described by the Fixed-Strut-Angle-Model (nDMaterial FSAM; Ulugtekin, 2010; Orakcal et al., 2012),
into a 2-D macroscopic fiber-based model (MVLEM). The interaction between axial and shear behavior is captured at
each RC panel (macro-fiber) level, which further incorporates interaction between shear and flexural behavior at the
SFI_MVLEM element level.

element (7, eleTag, *eleNodes, m, ¢, '-thick’, *Thicknesses, *-width’, *Widths, -mat’, *Material_tags)

eleTag (int) unique element object tag

eleNodes (list (int)) a list of two element nodes

m (int) Number of element macro-fibers

c (float) Location of center of rotation with from the iNode, ¢ = 0.4 (recommended)
Thicknesses (list (float)) a list of m macro-fiber thicknesses

Widths (list (float)) a list of m macro-fiber widths

Material_tags (list (int)) | a list of m macro-fiber nDMateriall tags

See also:

Notes

1.4. Model Commands 21

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://opensees.berkeley.edu/wiki/index.php/MVLEM_-_Multiple-Vertical-Line-Element-Model_for_RC_Walls
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
http://opensees.berkeley.edu/wiki/index.php/SFI_MVLEM_-_Cyclic_Shear-Flexure_Interaction_Model_for_RC_Walls

OpenSeesPy Documentation, Release 1.0.0b1

BeamColumnJoint Element

This command is used to construct a two-dimensional beam-column-joint element object. The element may be used
with both two-dimensional and three-dimensional structures; however, load is transferred only in the plane of the
element.

element (’beamColumnloint’, eleTag, *eleNodes, Matl, Mat2, Mat3, Mat4, Mat5, Mat6, Mat7, MatS, Mat9,
Matl0, Matl1, Mat12, Mat13[, eleHeightFac=1.0, eleWidthFac=1.0 |

eleTag unique element object tag
(int)

eleNodes | a list of four element nodes
(list (int))

Mat1 (int) uniaxial material tag for left bar-slip spring at node 1
Mat 2 (int) uniaxial material tag for right bar-slip spring at node 1

Mat 3 (int) uniaxial material tag for interface-shear spring at node 1
Mat4 (int) uniaxial material tag for lower bar-slip spring at node 2
Mat 5 (int) uniaxial material tag for upper bar-slip spring at node 2
Mat 6 (int) uniaxial material tag for interface-shear spring at node 2
Mat 7 (int) uniaxial material tag for left bar-slip spring at node 3
Mat 8 (int) uniaxial material tag for right bar-slip spring at node 3
Mat 9 (int) uniaxial material tag for interface-shear spring at node 3

Mat10 (int) | uniaxial material tag for lower bar-slip spring at node 4

Mat11 (int) | uniaxial material tag for upper bar-slip spring at node 4

Mat12 (int) | uniaxial material tag for interface-shear spring at node 4

Mat13 (int) | uniaxial material tag for shear-panel

eleHeightFdlwating point value (as a ratio to the total height of the element) to be considered for de-

(float) termination of the distance in between the tension-compression couples (optional, default:
1.0)
eleWidthFadloating point value (as a ratio to the total width of the element) to be considered for de-
(float) termination of the distance in between the tension-compression couples (optional, default:
1.0)
See also:

Notes

ElasticTubularJoint Element
This command is used to construct an ElasticTubularJoint element object, which models joint flexibility of tubular
joints in two dimensional analysis of any structure having tubular joints.

element (’ElasticTubularJoint’, eleTag, *eleNodes, Brace_Diameter, Brace_Angle, E, Chord_Diameter,
Chord_Thickness, Chord_Angle)

eleTag (int) unique element object tag

eleNodes (list (int)) a list of two element nodes

Brace_Diameter (float) outer diameter of brace

Brace_Angle (float) angle between brace and chord axis 0 < Brace_Angle < 90
E (float) Young’s Modulus

Chord_Diameter (float) outer diameter of chord
Chord_Thickness (float) | thickness of chord
Chord_Angle (float) angle between chord axis and global x-axis 0 < Chord_Angle < 180

22 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/BeamColumnJoint_Element
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

See also:

Notes

Joint2D Element

This command is used to construct a two-dimensional beam-column-joint element object. The two dimensional beam-
column joint is idealized as a parallelogram shaped shear panel with adjacent elements connected to its mid-points.
The midpoints of the parallelogram are referred to as external nodes. These nodes are the only analysis components
that connect the joint element to the surrounding structure.

element ('Joint2D’, eleTag, *eleNodes[, Matl, Mat2, Mat3, Mat4], MatC, LrgDspTag)

eleTag | unique element object tag
(int)
eleNodgsa list of five element nodes = [nd1l, nd2, nd3, nd4, ndC]. ndcC is the central node of beam-
(list column joint. (the tag ndC is used to generate the internal node, thus, the node should not exist
(int)) in the domain or be used by any other node)
Matl uniaxial material tag for interface rotational spring at node 1. Use a zero tag to indicate the case
(int) that a beam-column element is rigidly framed to the joint. (optional)
Mat?2 uniaxial material tag for interface rotational spring at node 2. Use a zero tag to indicate the case
(int) that a beam-column element is rigidly framed to the joint. (optional)
Mat3 uniaxial material tag for interface rotational spring at node 3. Use a zero tag to indicate the case
(int) that a beam-column element is rigidly framed to the joint. (optional)
Mat4 uniaxial material tag for interface rotational spring at node 4. Use a zero tag to indicate the case
(int) that a beam-column element is rigidly framed to the joint. (optional)
MatC uniaxial material tag for rotational spring of the central node that describes shear panel behavior
(int)
LrgDspTaan integer indicating the flag for considering large deformations: * O - for small deformations
(int) and constant geometry * 1 - for large deformations and time varying geometry * 2 - for large
deformations ,time varying geometry and length correction
See also:

Notes

Two Node Link Element

This command is used to construct a twoNodeLink element object, which is defined by two nodes. The element can
have zero or non-zero length. This element can have 1 to 6 degrees of freedom, where only the transverse and rotational
degrees of freedom are coupled as long as the element has non-zero length. In addition, if the element length is larger
than zero, the user can optionally specify how the P-Delta moments around the local x- and y-axis are distributed
among a moment at node i, a moment at node j, and a shear couple. The sum of these three ratios is always equal to
1. In addition the shear center can be specified as a fraction of the element length from the iNode. The element does
not contribute to the Rayleigh damping by default. If the element has non-zero length, the local x-axis is determined
from the nodal geometry unless the optional x-axis vector is specified in which case the nodal geometry is ignored
and the user-defined orientation is utilized. It is important to recognize that if this element has zero length, it does not
consider the geometry as given by the nodal coordinates, but utilizes the user-defined orientation vectors to determine
the directions of the springs.

element (‘twoNodeLink’, eleTag, *eleNodes, '-mat’, *matTags, ’-dir’, *dirs[, -orient’, *vecx, *vecy][, -
pDelta’, *Mratio][, *-shearDist’, *sDratios][, ’-doRayleigh’][, "-mass’, m])

1.4. Model Commands 23

http://opensees.berkeley.edu/wiki/index.php/ElasticTubularJoint_Element
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://opensees.berkeley.edu/wiki/index.php/Joint2D_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int)

unique element object tag

eleNodes (list (int))

a list of two element nodes

matTags (list (int))

a list of tags associated with previously-defined Uni-
axialMaterial objects

dirs (list (int))

a list material directions:
e 2D-case: 1, 2 - translations along local x,y
axes; 3 - rotation about local z axis
* 3D-case: 1, 2, 3 - translations along local x,y,z
axes; 4, 5, 6 - rotations about local x,y,z axes

vecx (list (float))

vector components in global coordinates defining lo-
cal x-axis (optional)

vecy (list (float))

vector components in global coordinates defining lo-
cal y-axis (optional)

Mratios (list (float))

P-Delta moment contribution ratios, size of ratio
vector is 2 for 2D-case and 4 for 3D-case (en-
tries: [My_iNode, My_jNode, Mz_iNode,
Mz_jNode]) My_iNode + My_ jNode <= 1.0,
Mz_iNode + Mz_jNode <= 1.0. Remaining P-
Delta moments are resisted by shear couples. (op-
tional)

sDratios (list (float))

shear distances from iNode as a fraction of the
element length, size of ratio vector is 1 for 2D-
case and 2 for 3D-case. (entries: [dy_iNode,
dz_iNode]) (optional, default= [0.5, 0.5])

'—doRayleigh"' (str)

to include Rayleigh damping from the element (op-
tional, default = no Rayleigh damping contribution)

m (float)

element mass (optional, default = 0.0)

See also:

Notes

Elastomeric Bearing (Plasticity) Element

This command is used to construct an elastomericBearing element object, which is defined by two nodes. The element
can have zero length or the appropriate bearing height. The bearing has unidirectional (2D) or coupled (3D) plasticity
properties for the shear deformations, and force-deformation behaviors defined by UniaxialMaterials in the remaining
two (2D) or four (3D) directions. By default (sDratio = 0.5) P-Delta moments are equally distributed to the two
end-nodes. To avoid the introduction of artificial viscous damping in the isolation system (sometimes referred to
as “damping leakage in the isolation system”), the bearing element does not contribute to the Rayleigh damping by
default. If the element has non-zero length, the local x-axis is determined from the nodal geometry unless the optional
x-axis vector is specified in which case the nodal geometry is ignored and the user-defined orientation is utilized.

element (’elastomericBearingPlasticity’, elelag, *eleNodes, kinit, qd, alphal, alpha2, mu, ’-P’, matlag, ’-
Mz, matTag[, -orient’, x1,x2,x3,y1,y2,y3] [*-shearDist’, sDratio] ["-doRayleigh’] [-mass’,

m])
For a two-dimensional problem

element (’elastomericBearingPlasticity’, eleTag, *eleNodes, kInit, qd, alphal, alpha2, mu, ’-P’, matTag, ’-T’,
matTag, ’-My’, matTag, -Mz’, matTag[, ’-orient’[, xI, x2, x3], yvl,y2,y3] [, ’-shearDist’, sDratio

]["-doRayleigh’] ["-mass’, m])
For a three-dimensional problem

24

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Two_Node_Link_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int) unique element object tag

eleNodes (list | alist of two element nodes

(int))

kInit (float) initial elastic stiffness in local shear direction

qd (float) characteristic strength

alphal (float) post yield stiffness ratio of linear hardening component
alpha?2 (float) post yield stiffness ratio of non-linear hardening component
mu (float) exponent of non-linear hardening component

'-P'matTag (int) | tag associated with previously-defined UniaxialMaterial in axial direction
'-T'matTag (int) | tag associated with previously-defined UniaxialMaterial in torsional direction

'-My' matTag | tag associated with previously-defined UniaxialMaterial in moment direction around
(int) local y-axis
'-Mz' matTag | tag associated with previously-defined UniaxialMaterial in moment direction around
(int) local z-axis
x1 x2 %3 (float) vector components in global coordinates defining local x-axis (optional)
y1 y2 y3 (float) vector components in global coordinates defining local y-axis (optional)
sDratio (float) shear distance from iNode as a fraction of the element length (optional, default = 0.5)
'-doRayleigh' | toinclude Rayleigh damping from the bearing (optional, default = no Rayleigh damp-
(str) ing contribution)
m (float) element mass (optional, default = 0.0)

See also:

Notes

Elastomeric Bearing (Bouc-Wen) Element

This command is used to construct an elastomericBearing element object, which is defined by two nodes. The element
can have zero length or the appropriate bearing height. The bearing has unidirectional (2D) or coupled (3D) plasticity
properties for the shear deformations, and force-deformation behaviors defined by UniaxialMaterials in the remaining
two (2D) or four (3D) directions. By default (sDratio = 0.5) P-Delta moments are equally distributed to the two
end-nodes. To avoid the introduction of artificial viscous damping in the isolation system (sometimes referred to
as “damping leakage in the isolation system”), the bearing element does not contribute to the Rayleigh damping by
default. If the element has non-zero length, the local x-axis is determined from the nodal geometry unless the optional
x-axis vector is specified in which case the nodal geometry is ignored and the user-defined orientation is utilized.

element (’elastomericBearingBoucWen’, eleTag, *eleNodes, kinit, qd, alphal, alpha2, mu, eta, beta, gamma
-P’, matTag ’-Mz’, matTag[, -orient’, x1, x2, x3, yl, y2, y3] [, ’-shearDist’, sDratio][, -
doRayleigh’] [, -mass’, m])
For a two-dimensional problem

element (’elastomericBearingBoucWen’, eleTag, *eleNodes, kilnit, qd, alphal, alpha2, mu, eta, beat, gamma,
-P’, matTag, '-T’, matTag, -My’, matTag, *-Mz’, matTag[, ’-orient’[, xI, x2, x3], vl, y2, y3][,
"-shearDist’, sDratio] [, "-doRayleigh’] [, -mass, m])
For a three-dimensional problem

1.4. Model Commands 25

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Elastomeric_Bearing_(Plasticity)_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int) unique element object tag

eleNodes (list | alist of two element nodes

(int))

kInit (float) initial elastic stiffness in local shear direction

qd (float) characteristic strength

alphal (float) post yield stiffness ratio of linear hardening component
alpha?2 (float) post yield stiffness ratio of non-linear hardening component
mu (float) exponent of non-linear hardening component

eta (float) yielding exponent (sharpness of hysteresis loop corners) (default = 1.0)
beta (float) first hysteretic shape parameter (default = 0.5)

gamma (float) second hysteretic shape parameter (default = 0.5)

'-P'matTag (int) | tag associated with previously-defined UniaxialMaterial in axial direction
'-T' matTag (int) | tag associated with previously-defined UniaxialMaterial in torsional direction

'-My' matTag | tag associated with previously-defined UniaxialMaterial in moment direction around
(int) local y-axis
'-Mz' matTag | tag associated with previously-defined UniaxialMaterial in moment direction around
(int) local z-axis
x1 x2 x3 (float) vector components in global coordinates defining local x-axis (optional)
vl y2 y3 (float) vector components in global coordinates defining local y-axis (optional)
sDratio (float) shear distance from iNode as a fraction of the element length (optional, default = 0.5)
'-doRayleigh’ to include Rayleigh damping from the bearing (optional, default = no Rayleigh damp-
(str) ing contribution)
m (float) element mass (optional, default = 0.0)

See also:

Notes

Flat Slider Bearing Element

This command is used to construct a flatSliderBearing element object, which is defined by two nodes. The iNode rep-
resents the flat sliding surface and the jNode represents the slider. The element can have zero length or the appropriate
bearing height. The bearing has unidirectional (2D) or coupled (3D) friction properties for the shear deformations,
and force-deformation behaviors defined by UniaxialMaterials in the remaining two (2D) or four (3D) directions. To
capture the uplift behavior of the bearing, the user-specified UniaxialMaterial in the axial direction is modified for
no-tension behavior. By default (sDratio = 0.0) P-Delta moments are entirely transferred to the flat sliding surface (iN-
ode). It is important to note that rotations of the flat sliding surface (rotations at the iNode) affect the shear behavior
of the bearing. To avoid the introduction of artificial viscous damping in the isolation system (sometimes referred to
as “damping leakage in the isolation system”), the bearing element does not contribute to the Rayleigh damping by
default. If the element has non-zero length, the local x-axis is determined from the nodal geometry unless the optional
x-axis vector is specified in which case the nodal geometry is ignored and the user-defined orientation is utilized.

element (flatSliderBearing’, eleTag, *eleNodes, frnMdlTag, kinit, ’-P’, matTag, -Mz’, matTag[, "-orient’,
x1, x2, x3, yl, y2, y3][, "-shearDist’, sDratio][, "-doRayleigh’] [, -mass’, m] [, -iter’, maxlter,
tol])
For a two-dimensional problem

element (flatSliderBearing’, eleTag, *eleNodes, frnMdlTag, kinit, ’-P’, matTag, ’-T’, matTag, -My’, matTag,
Mz, matTag[, ’—orient’[, x1, x2, x3], yvl, y2, y3][, ’-shearDist’, sDratio][, "-doRayleigh’] [, -

mass’, m] [, ‘-iter’, maxlter, tol])
For a three-dimensional problem

26 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Elastomeric_Bearing_(Bouc-Wen)_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int) unique element object tag
eleNodes (list | alist of two element nodes
(int))
frnMd1Tag (float) | tag associated with previously-defined FrictionModel
kInit (float) initial elastic stiffness in local shear direction
'-P'matTag (int) | tag associated with previously-defined UniaxialMaterial in axial direction
'-T'matTag (int) | tag associated with previously-defined UniaxialMaterial in torsional direction
'-My' matTag | tag associated with previously-defined UniaxialMaterial in moment direction around
(int) local y-axis
'-Mz' matTag | tag associated with previously-defined UniaxialMaterial in moment direction around
(int) local z-axis
x1 x2 x3 (float) vector components in global coordinates defining local x-axis (optional)
yv1 y2 y3 (float) vector components in global coordinates defining local y-axis (optional)
sDratio (float) shear distance from iNode as a fraction of the element length (optional, default = 0.0)
'-doRayleigh’ to include Rayleigh damping from the bearing (optional, default = no Rayleigh damp-
(str) ing contribution)
m (float) element mass (optional, default = 0.0)
maxIter (int) maximum number of iterations to undertake to satisfy element equilibrium (optional,
default = 20)
tol (float) convergence tolerance to satisfy element equilibrium (optional, default = 1E-8)
See also:
Notes

Single Friction Pendulum Bearing Element

This command is used to construct a singleFPBearing element object, which is defined by two nodes. The iNode
represents the concave sliding surface and the jNode represents the articulated slider. The element can have zero
length or the appropriate bearing height. The bearing has unidirectional (2D) or coupled (3D) friction properties (with
post-yield stiffening due to the concave sliding surface) for the shear deformations, and force-deformation behaviors
defined by UniaxialMaterials in the remaining two (2D) or four (3D) directions. To capture the uplift behavior of
the bearing, the user-specified UniaxialMaterial in the axial direction is modified for no-tension behavior. By default
(sDratio = 0.0) P-Delta moments are entirely transferred to the concave sliding surface (iNode). It is important to note
that rotations of the concave sliding surface (rotations at the iNode) affect the shear behavior of the bearing. To avoid
the introduction of artificial viscous damping in the isolation system (sometimes referred to as “damping leakage in
the isolation system”), the bearing element does not contribute to the Rayleigh damping by default. If the element has
non-zero length, the local x-axis is determined from the nodal geometry unless the optional x-axis vector is specified
in which case the nodal geometry is ignored and the user-defined orientation is utilized.

element (’singleFPBearing’, eleTag, *eleNodes, frnMdlTag, Reff, kinit, ’-P’, matTag, ’-Mz’, matTag[, -
orient’, x1, x2, x3, yl, y2, y3] [’-shearDist’, sDratio][, ’-doRayleigh’][, -mass’, m] [‘-iter’,
maxlter, tol])
For a two-dimensional problem

element (’singleFPBearing’, eleTag, *eleNodes, frnMdlTag, Reff, kinit, ’-P’, matTag, -T’, matTag, ’-
My’, matTag, -Mz7’, matTag[, ’-orient’[, xl, x2, x3], vl, y2, y3][, "-shearDist’, sDratio][, -
doRayleigh’] [, -mass’, m] [, -iter’, maxlter, tol])
For a three-dimensional problem

1.4. Model Commands 27

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Flat_Slider_Bearing_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int) unique element object tag
eleNodes (list | alist of two element nodes
(int))
frnMd1Tag (float) | tag associated with previously-defined FrictionModel
Reff (float) effective radius of concave sliding surface
kInit (float) initial elastic stiffness in local shear direction
'-P'matTag (int) | tag associated with previously-defined UniaxialMaterial in axial direction
'-T'matTag (int) | tag associated with previously-defined UniaxialMaterial in torsional direction
'-My' matTag | tag associated with previously-defined UniaxialMaterial in moment direction around
(int) local y axis
'-Mz' matTag | tag associated with previously-defined UniaxialMaterial in moment direction around
(int) local z-axis
x1 x2 %3 (float) vector components in global coordinates defining local x-axis (optional)
y1 y2 y3 (float) vector components in global coordinates defining local y-axis (optional)
sDratio (float) shear distance from iNode as a fraction of the element length (optional, default = 0.0)
'—-doRayleigh' | toinclude Rayleigh damping from the bearing (optional, default = no Rayleigh damp-
(str) ing contribution)
m (float) element mass (optional, default = 0.0)
maxIter (int) maximum number of iterations to undertake to satisfy element equilibrium (optional,
default = 20)
tol (float) convergence tolerance to satisfy element equilibrium (optional, default = 1E-8)
See also:
Notes

Triple Friction Pendulum Bearing Element

This command is used to construct a Triple Friction Pendulum Bearing element object, which is defined by two nodes.
The element can have zero length or the appropriate bearing height. The bearing has unidirectional (2D) or coupled
(3D) friction properties (with post-yield stiffening due to the concave sliding surface) for the shear deformations,
and force-deformation behaviors defined by UniaxialMaterials in the remaining two (2D) or four (3D) directions. To
capture the uplift behavior of the bearing, the user-specified UniaxialMaterial in the axial direction is modified for
no-tension behavior. P-Delta moments are entirely transferred to the concave sliding surface (iNode). It is important
to note that rotations of the concave sliding surface (rotations at the iNode) affect the shear behavior of the bearing.
If the element has non-zero length, the local x-axis is determined from the nodal geometry unless the optional x-axis
vector is specified in which case the nodal geometry is ignored and the user-defined orientation is utilized.

element ('TFP’, elelag, *eleNodes, R1, R2, R3, R4, D1, D2, D3, D4, d1, d2, d3, d4, mul, mu2, mu3, mu4,
hl, h2, h3, h4, HO, colLoad|, K |)

28 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Single_Friction_Pendulum_Bearing_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int)

unique element object tag

eleNodes (list

a list of two element nodes

(int))

R1 (float) Radius of inner bottom sliding surface
R2 (float) Radius of inner top sliding surface

R3 (float) Radius of outer bottom sliding surface
R4 (float) Radius of outer top sliding surface

D1 (float) Diameter of inner bottom sliding surface
D2 (float) Diameter of inner top sliding surface

D3 (float) Diameter of outer bottom sliding surface
D4 (float) Diameter of outer top sliding surface

d1 (float) diameter of inner slider

d2 (float) diameter of inner slider

d3 (float) diameter of outer bottom slider

d4 (float) diameter of outer top slider

mul (float)

friction coefficient of inner bottom sliding surface

mu?2 (float)

friction coefficient of inner top sliding surface

mu 3 (float)

friction coefficient of outer bottom sliding surface

mu4 (float)

friction coefficient of outer top sliding surface

h1 (float) height from inner bottom sliding surface to center of bearing
h2 (float) height from inner top sliding surface to center of bearing
h3 (float) height from outer bottom sliding surface to center of bearing
h4 (float) height from inner top sliding surface to center of bearing
HO (float) total height of bearing
colLoad (float) initial axial load on bearing (only used for first time step then load come from model)
K (float) optional, stiffness of spring in vertical dirn (dof 2 if ndm= 2, dof 3 if ndm = 3) (de-
fault=1.0e15)
See also:

Notes

Triple Friction Pendulum Element

element ('TripleFrictionPendulum’, eleTag, *eleNodes, frnTagl, frnTag2, frnTag3, vertMatTag, rotZMatTag,

rotXMatTag, rotYMatTag, L1, L2, L3, dl, d2, d3, W, uy, kvt, minFv, tol)

1.4. Model Commands

29

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Triple_Friction_Pendulum_Bearing_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag | unique element object tag

(int)

eleNodes a list of two element nodes

(list (int))

frnTagl, =tags associated with previously-defined FrictionModels at the three sliding interfaces

frnTag2

frnTag3

(int)

vertMat TagPre-defined material tag for COMPRESSION behavior of the bearing

(int)

rot ZMat TagPre-defined material tags for rotational behavior about 3-axis, 1-axis and 2-axis, respectively.

rotXMatTag

rotYMatTag

(int)

L1l = effective radii. Li = R_i - h_i (see Figure 1)

L2 L3

(float)

dl = displacement limits of pendulums (Figure 1). Displacement limit of the bearing is 2 d1 + d2

d2 d3 | +d3+L1.d3/L3-L1.d2/L2

(float)

W (float) = axial force used for the first trial of the first analysis step.

uy = lateral displacement where sliding of the bearing starts. Recommended value = 0.25 to 1 mm.

(float) A smaller value may cause convergence problem.

kvt = Tension stiffness k_vt of the bearing.

(float)

minFv = minimum vertical compression force in the bearing used for computing the horizontal tangent

(>=0) stiffness matrix from the normalized tangent stiffness matrix of the element. minFv is sub-

(float) stituted for the actual compressive force when it is less than minFv, and prevents the element
from using a negative stiffness matrix in the horizontal direction when uplift occurs. The vertical
nodal force returned to nodes is always computed from kvc (or kvt) and vertical deformation,
and thus is not affected by minFwv.

tol = relative tolerance for checking the convergence of the element. Recommended value = 1.e-10

(float) to l.e-3.

See also:

Notes

MultipleShearSpring Element

This command is u

sed to construct a multipleShearSpring (MSS) element object, which is defined by two nodes. This

element consists of a series of identical shear springs arranged radially to represent the isotropic behavior in the local

y-z plane.

element (’multipleShearSpring’, eleTag, *eleNodes, nSpring, '-mat’, matTag[, lim’, dsp][, ’—orient’[, x1,
x2, x3], ypl, yp2, ypS][, -mass’, m])

30

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Triple_Friction_Pendulum_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int) unique element object tag

eleNodes (list | alist of two element nodes

(int))

nSpring (int) number of springs

matTag (int) tag associated with previously-defined UniaxialMaterial object

dsp (float) minimum deformation to calculate equivalent coefficient (see note 1)

x1 x2 x3 (float) | vector components in global coordinates defining local x-axis

ypl yp2 yp3 | vector components in global coordinates defining vector yp which lies in the local x-y
(float) plane for the element

m (float) element mass

Note: If dsp is positive and the shear deformation of MSS exceeds dsp, this element calculates equivalent coefficient
to adjust force and stiffness of MSS. The adjusted MSS force and stiffness reproduce the behavior of the previously
defined uniaxial material under monotonic loading in every direction. If dsp is zero, the element does not calculate
the equivalent coefficient.

See also:

Notes

KikuchiBearing Element

This command is used to construct a KikuchiBearing element object, which is defined by two nodes. This element
consists of multiple shear spring model (MSS) and multiple normal spring model (MNS).

element (’KikuchiBearing’, eleTag, *eleNodes, ’-shape’, shape, ’-size’, size, totalRubber[, "-totalHeight’,
totalHeight], *-nMSS’, nMSS, '-matMSS’, matMSSTag[, *-limDisp’, limDisp], "-nMNS’, nMNS, -
matMNS’, matMNSTag[, lambda’, lambda] [, ’-orient’[, xI,x2, x3], ypl, yp2, yp3] [, -mass’, m
][, ’-noPDInput’] [, -noTilt’] [, "-adjustPDOutput’, ci, cj] [, -doBalance’, limFo, limFi, nIter])

1.4. Model Commands 31

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/MultipleShearSpring_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int)

unique element object tag

eleNodes

(list (int))

a list of two element nodes

shape (float)

following shapes are available: round, square

size (float)

diameter (round shape), length of edge (square shape)

totalRubber | total rubber thickness

(float)

totalHeight | total height of the bearing (defaulut: distance between iNode and jNode)
(float)

nMSS (int) number of springs in MSS = nMSS

matMSSTag matTag for MSS

(int)

limDisp minimum deformation to calculate equivalent coefficient of MSS (see note 1)
(float)

nMNS (int) number of springs in MNS = nMNS*nMNS (for round and square shape)
matMNSTag matTag for MNS

(int)

lambda (float) | parameter to calculate compression modulus distribution on MNS (see note 2)
x1 x2 %3 | vector components in global coordinates defining local x-axis

(float)

ypl yp2 yp3
(float)

vector components in global coordinates defining vector yp which lies in the local x-y
plane for the element

m (float) element mass
'-noPDInput'| not consider P-Delta moment
(str)

'-noTilt' not consider tilt of rigid link
(str)

ci cj (float)

P-Delta moment adjustment for reaction force (default: ci =0.5, cj =0.5)

limFo limFi
nIter (float)

tolerance of external unbalanced force (1imF o), tolorance of internal unbalanced force
(1imFi), number of iterations to get rid of internal unbalanced force (nIter)

See also:

Notes

YamamotoBiaxialHDR Element

This command is used to construct a YamamotoBiaxialHDR element object, which is defined by two nodes. This
element can be used to represent the isotropic behavior of high-damping rubber bearing in the local y-z plane.

element (’'YamamotoBiaxialHDR’, eleTag, *eleNodes, Tp, DDo, DDi, Hr[, -coRS", cr, cs][, ’-orient‘[, xl,
x2, x3], vl,y2, y3][, -mass°, m])

32 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/KikuchiBearing_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int) unique element object tag
eleNodes (list | alist of two element nodes
(int))
Tp (int) compound type = 1 : X0.6R manufactured by Bridgestone corporation.
DDo (float) outer diameter [m]
DD1i (float) bore diameter [m]
Hr (float) total thickness of rubber layer [m] Optional Data
cr cs (float) coefficients for shear stress components of 71 and 7s
x1 x2 x3 (float) | vector components in global coordinates defining local x-axis
ypl yp2 yp3 | vector components in global coordinates defining vector yp which lies in the local x-y
(float) plane for the element
m (float) element mass [kg]
See also:

Notes

ElastomericX

This command is used to construct an ElastomericX bearing element object in three-dimension. The 3D continuum
geometry of an elastomeric bearing is modeled as a 2-node, 12 DOF discrete element. This elements extends the
formulation of Elastomeric_Bearing_(Bouc-Wen)_Element element. However, instead of the user providing material
models as input arguments, it only requires geometric and material properties of an elastomeric bearing as arguments.
The material models in six direction are formulated within the element from input arguments. The time-dependent val-
ues of mechanical properties (e.g., shear stiffness, buckling load capacity) can also be recorded using the “parameters”
recorder.

element (’ElastomericX’, eleTag, *eleNodes, Fy, alpha, Gr, Kbulk, D1, D2, ts, tr, n[[, xI, x2, x3], vil,y2,y3

][, kc] [, PhiM] [, ac] [, sDratio] [, m] [, cd] [, tc] [, tagl] [, tag?] [, tag3] [, tag4])
For 3D problem

1.4. Model Commands 33

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/YamamotoBiaxialHDR_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int) unique element object tag

eleNodes (list | alist of two element nodes

(int))

Fy (float) yield strength

alpha (float) post-yield stiffness ratio

Gr (float) shear modulus of elastomeric bearing

Kbulk (float) bulk modulus of rubber

D1 (float) internal diameter

D2 (float) outer diameter (excluding cover thickness)

ts (float) single steel shim layer thickness

tr (float) single rubber layer thickness

n (int) number of rubber layers

x1 x2 %3 (float) vector components in global coordinates defining local x-axis (optional)

vl y2 y3 (float) vector components in global coordinates defining local y-axis (optional)

kc (float) cavitation parameter (optional, default = 10.0)

PhiM (float) damage parameter (optional, default = 0.5)

ac (float) strength reduction parameter (optional, default = 1.0)

sDratio (float) shear distance from iNode as a fraction of the element length (optional, default =
0.5)

m (float) element mass (optional, default = 0.0)

cd (float) viscous damping parameter (optional, default = 0.0)

tc (float) cover thickness (optional, default = 0.0)

tagl (float) Tag to include cavitation and post-cavitation (optional, default = 0)

tag2 (float) Tag to include buckling load variation (optional, default = 0)

tag3 (float) Tag to include horizontal stiffness variation (optional, default = 0)

tag4 (float) Tag to include vertical stiffness variation (optional, default = 0)

Note: Because default values of heating parameters are in SI units, user must override the default heating parameters
values if using Imperial units

User should distinguish between yield strength of elastomeric bearing (F}) and characteristic strength (Qq): Qq =
F, % (1 — alpha)

See also:

Notes

LeadRubberX

This command is used to construct a LeadRubberX bearing element object in three-dimension. The 3D continuum
geometry of a lead rubber bearing is modeled as a 2-node, 12 DOF discrete element. It extends the formulation of
ElastomericX by including strength degradation in lead rubber bearing due to heating of the lead-core. The Lead-
RubberX element requires only the geometric and material properties of an elastomeric bearing as arguments. The
material models in six direction are formulated within the element from input arguments. The time-dependent values
of mechanical properties (e.g., shear stiffness, buckling load capacity, temperature in the lead-core, yield strength) can
also be recorded using the “parameters” recorder.

element (’LeadRubberX’, eleTag, *eleNodes, Fy, alpha, Gr, Kbulk, D1, D2, ts, tr, n[[, xI, x2, x3], vl,y2,y3

][, kcﬂ[, PhiM][, ac][, sDratio][, m][, cd][, tc][, qL][, cL][, kS][, aS][, tag]][, tagZ][,

tag3 ||, tag4] [, tag5])

34 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/ElastomericX

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int) unique element object tag

eleNodes (list | a list of two element nodes

(int))

Fy (float) yield strength

alpha (float) post-yield stiffness ratio

Gr (float) shear modulus of elastomeric bearing

Kbulk (float) bulk modulus of rubber

D1 (float) internal diameter

D2 (float) outer diameter (excluding cover thickness)

ts (float) single steel shim layer thickness

tr (float) single rubber layer thickness

n (int) number of rubber layers

x1 x2 %3 (float) vector components in global coordinates defining local x-axis (optional)

vl y2 y3 (float) vector components in global coordinates defining local y-axis (optional)

kc (float) cavitation parameter (optional, default = 10.0)

PhiM (float) damage parameter (optional, default = 0.5)

ac (float) strength reduction parameter (optional, default = 1.0)

sDratio (float) shear distance from iNode as a fraction of the element length (optional, default = 0.5)

m (float) element mass (optional, default = 0.0)

cd (float) viscous damping parameter (optional, default = 0.0)

tc (float) cover thickness (optional, default = 0.0)

gL (float) density of lead (optional, default = 11200 kg/m3)

cL (float) specific heat of lead (optional, default = 130 N-m/kg oC)

kS (float) thermal conductivity of steel (optional, default = 50 W/m oC)

as (float) thermal diffusivity of steel (optional, default = 1.41e-05 m2/s)

tagl (int) Tag to include cavitation and post-cavitation (optional, default = 0)

tag2 (int) Tag to include buckling load variation (optional, default = 0)

tag3 (int) Tag to include horizontal stiffness variation (optional, default = 0)

tag4 (int) Tag to include vertical stiffness variation (optional, default = 0)

tagh (int) Tag to include strength degradation in shear due to heating of lead core (optional,
default = 0)

Note: Because default values of heating parameters are in SI units, user must override the default heating parameters
values if using Imperial units

User should distinguish between yield strength of elastomeric bearing (F}) and characteristic strength (Qq): Qq =
F, « (1 — alpha)

See also:

Notes

HDR

This command is used to construct an HDR bearing element object in three-dimension. The 3D continuum geometry
of an high damping rubber bearing is modeled as a 2-node, 12 DOF discrete element. This is the third element in the
series of elements developed for analysis of base-isolated structures under extreme loading (others being ElastomericX
and LeadRubberX). The major difference between HDR element with ElastomericX is the hysteresis model in shear.
The HDR element uses a model proposed by Grant et al. (2004) to capture the shear behavior of a high damping
rubber bearing. The time-dependent values of mechanical properties (e.g., vertical stiffness, buckling load capacity)
can also be recorded using the “parameters” recorder.

1.4. Model Commands 35

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://opensees.berkeley.edu/wiki/index.php/LeadRubberX

OpenSeesPy Documentation, Release 1.0.0b1

element ('HDR’, eleTag, *eleNodes, Gr, Kbulk, D1, D2, ts, tr, n, al, a2, a3, bl, b2, b3, cl, c2, ¢3, c4[[, x1,
x2,x3], vl, y2, y3][, kc][, PhiM][, ac][, sDratio][, m][, tc])

For 3D problem

eleTag (int)

unique element object tag

eleNodes (list (int))

a list of two element nodes

Gr (float) shear modulus of elastomeric bearing
Kbulk (float) bulk modulus of rubber

D1 (float) internal diameter

D2 (float) outer diameter (excluding cover thickness)
ts (float) single steel shim layer thickness

tr (float) single rubber layer thickness

n (int) number of rubber layers
ala2a3blb2b3clc2c3cd | parameters of the Grant model

(float)

x1 x2 x3 (float)

vector components in global coordinates defining local x-axis (op-
tional)

y1 y2 y3 (float)

vector components in global coordinates defining local y-axis (op-
tional)

kc (float) cavitation parameter (optional, default = 10.0)
PhiM (float) damage parameter (optional, default = 0.5)
ac (float) strength reduction parameter (optional, default = 1.0)

sDratio (float)

shear distance from iNode as a fraction of the element length (optional,
default = 0.5)

m (float) element mass (optional, default = 0.0)
tc (float) cover thickness (optional, default = 0.0)
See also:

Notes

RJ-Watson EQS Bearing Element

This command is used to construct a RIWatsonEgsBearing element object, which is defined by two nodes. The iNode
represents the masonry plate and the jNode represents the sliding surface plate. The element can have zero length or
the appropriate bearing height. The bearing has unidirectional (2D) or coupled (3D) friction properties (with post-
yield stiffening due to the mass-energy-regulator (MER) springs) for the shear deformations, and force-deformation
behaviors defined by UniaxialMaterials in the remaining two (2D) or four (3D) directions. To capture the uplift
behavior of the bearing, the user-specified UniaxialMaterial in the axial direction is modified for no-tension behavior.
By default (sDratio = 1.0) P-Delta moments are entirely transferred to the sliding surface (jNode). It is important to
note that rotations of the sliding surface (rotations at the jNode) affect the shear behavior of the bearing. To avoid the
introduction of artificial viscous damping in the isolation system (sometimes referred to as “damping leakage in the
isolation system”), the bearing element does not contribute to the Rayleigh damping by default. If the element has
non-zero length, the local x-axis is determined from the nodal geometry unless the optional x-axis vector is specified
in which case the nodal geometry is ignored and the user-defined orientation is utilized.

element ('R/WatsonEqsBearing’, elelag, *eleNodes, frnMdlTag, kinit, -P’, matlag, ’-Vy’, matlag, -Mz’,
matTag[, -orient’, x1, x2, x3, yl, y2, y3][, ’-shearDist’, sDratio][, ’-doRayleigh’][, -mass’, m

][, "_iter’, maxlter, tol])

For a two-dimensional problem

element ('R/WatsonEqgsBearing’, eleTag, *eleNodes, frnMdlTag, kinit, ’-P’, matTag, ’-Vy’, matTag, -Vz’,
matTag, ’-T’, matTag, -My’, matTlag, '-Mz’, matTag[, ’-Orient’[, xI, x2, x3], i, y2, y3][, -
shearDist’, sDratio] [, ’-doRayleigh’] [, -mass’, m] [, -iter’, maxlter, tol])

36 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/HDR

OpenSeesPy Documentation, Release 1.0.0b1

For a three-dimensional problem

eleTag (int) unique element object tag
eleNodes a list of two element nodes
(list (int))
frnMdlTag tag associated with previously-defined FrictionModel
(float)
kInit (float) initial stiffness of sliding friction component in local shear direction
'-P' matTag | tag associated with previously-defined UniaxialMaterial in axial direction
(int)
'-Vy' tag associated with previously-defined UniaxialMaterial in shear direction along local y-
matTag axis (MER spring behavior not including friction)
(int)
'-vz' tag associated with previously-defined UniaxialMaterial in shear direction along local z-
matTag axis (MER spring behavior not including friction)
(int)
'-T' matTag | tag associated with previously-defined UniaxialMaterial in torsional direction
(int)
My tag associated with previously-defined UniaxialMaterial in moment direction around local
matTag y-axis
(int)
'-Mz' tag associated with previously-defined UniaxialMaterial in moment direction around local
matTag Z-axis
(int)
x1 x2 x3 | vector components in global coordinates defining local x-axis (optional)
(float)
vyl y2 y3 | vector components in global coordinates defining local y-axis (optional)
(float)
sDratio shear distance from iNode as a fraction of the element length (optional, default = 0.0)
(float)
'-doRayleigh o include Rayleigh damping from the bearing (optional, default = no Rayleigh damping
(str) contribution)
m (float) element mass (optional, default = 0.0)
maxIter (int) | maximum number of iterations to undertake to satisfy element equilibrium (optional, de-
fault = 20)
tol (float) convergence tolerance to satisfy element equilibrium (optional, default = 1E-8)
See also:

Notes

FPBearingPTV

The FPBearingPTV command creates a single Friction Pendulum bearing element, which is capable of accounting for
the changes in the coefficient of friction at the sliding surface with instantaneous values of the sliding velocity, axial
pressure and temperature at the sliding surface. The constitutive modelling is similar to the existing singleFPBear-
ing element, otherwise. The FPBearingPTV element has been verified and validated in accordance with the ASME
guidelines, details of which are presented in Chapter 4 of Kumar et al. (2015a).

element ('FPBearingPTV’, eleTag, *eleNodes, MuRef, IsPressureDependent, pRef, isTemperatureDepen-
dent, Diffusivity, Conductivity, IsVelocityDependent, rateParameter, ReffectiveFP, Radius_Contact,
kInitial, theMaterialA, theMaterialB, theMaterialC, theMaterialD, x1, x2, x3, y1, y2, y3, shearDist,
doRayleigh, mass, iter, tol, unit)

1.4. Model Commands 37

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/RJ-Watson_EQS_Bearing_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int)

unique element object tag

eleNodes (list (int))

a list of two element nodes

MuRef (float)

Reference coefficient of friction

IsPressureDependent (int)

1 if the coefficient of friction is a function of instan-
taneous axial pressure

pRef (float)

Reference axial pressure (the bearing pressure under
static loads)

IsTemperatureDependent (int)

1 if the coefficient of friction is a function of instan-
taneous temperature at the sliding surface

Diffusivity (float)

Thermal diffusivity of steel

Conductivity (float)

Thermal conductivity of steel

IsVelocityDependent (int)

1 if the coefficient of friction is a function of instan-
taneous velocity at the sliding surface

rateParameter (float)

The exponent that determines the shape of the coef-
ficient of friction vs. sliding velocity curve

ReffectiveFP (float)

Effective radius of curvature of the sliding surface of
the FPbearing

Radius_Contact (float)

Radius of contact area at the sliding surface

kInitial (float)

Lateral stiffness of the sliding bearing before sliding
begins

theMaterialA (int)

Tag for the uniaxial material in the axial direction

theMaterialB (int)

Tag for the uniaxial material in the torsional direction

theMaterialC (int)

Tag for the uniaxial material for rocking about local
Y axis

theMaterialD (int)

Tag for the uniaxial material for rocking about local
Z axis

x1 x2 x3 (float)

Vector components to define local X axis

v1 y2 y3 (float)

Vector components to define local Y axis

shearDist (float)

Shear distance from iNode as a fraction of the length
of the element

doRayleigh (int)

To include Rayleigh damping from the bearing

mass (float)

Element mass

iter (int)

Maximum number of iterations to satisfy the equilib-
rium of element

tol (float)

Convergence tolerance to satisfy the equilibrium of
the element

unit (int)

Tag to identify the unit from the list below.
:N,m,s, C

kN, m, s, C

: N, mm, s, C

: kN, mm, s, C

:1b,in, s, C

: kip, in, s, C

. 1b, ft, s, C

: kip, ft, s, C

L]
O J oy U W N

See also:

Notes

38

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
http://opensees.berkeley.edu/wiki/index.php/FPBearingPTV

OpenSeesPy Documentation, Release 1.0.0b1

Quad Element

This command is used to construct a FourNodeQuad element object which uses a bilinear isoparametric formulation.

element (’quad’, eleTag, *eleNodes, thick, type, matTag[, pressure, rho, bl, b2])

eleTag (int) unique element object tag

eleNodes (list | alist of four element nodes in counter-clockwise order

(int))

thick (float) element thickness

type (str) string representing material behavior. The type parameter can be either

'PlaneStrain' or 'PlaneStress'
matTag (int) tag of nDMaterial

pressure surface pressure (optional, default = 0.0)

(float)

rho (float) element mass density (per unit volume) from which a lumped element mass matrix is
computed (optional, default=0.0)

bl b2 (float) constant body forces defined in the isoparametric domain (optional, default=0.0)

Note:
1. Consistent nodal loads are computed from the pressure and body forces.

2. The valid queries to a Quad element when creating an ElementRecorder object are ‘forces’, ‘stresses,” and
‘material $matNum matArgl matArg2 ...” Where $matNum refers to the material object at the integration
point corresponding to the node numbers in the isoparametric domain.

See also:

Notes

Shell Element

This command is used to construct a ShelMITC4 element object, which uses a bilinear isoparametric formulation in
combination with a modified shear interpolation to improve thin-plate bending performance.

element (’ShellMITC4’, eleTag, *eleNodes, secTag)

eleTag unique element object tag

(int)

eleNodes | alist of four element nodes in counter-clockwise order

(list (int))

secTag tag associated with previously-defined SectionForceDeformation object. Currently must be
(int) eithera 'PlateFiberSection',or 'ElasticMembranePlateSection’

Note:

1. The valid queries to a Quad element when creating an ElementRecorder object are ‘forces’, ‘stresses,” and
‘material $matNum matArgl matArg2 ... Where $matNum refers to the material object at the integration
point corresponding to the node numbers in the isoparametric domain.

1.4. Model Commands 39

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Quad_Element
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

2. Itis a 3D element with 6 dofs and CAN NOT be used in 2D domain.

See also:

Notes

ShellDKGQ

This command is used to construct a ShelDKGQ element object, which is a quadrilateral shell element based on the
theory of generalized conforming element.

element ('ShellDKGQ’, eleTag, *eleNodes, secTag)

eleTag unique element object tag
(int)
eleNodes| a list of four element nodes in counter-clockwise order
(list (int))
secTag tag associated with previously-defined SectionForceDeformation object. Currently can
(int) be a 'PlateFiberSection', a 'ElasticMembranePlateSection' and a
'LayeredShell"' section
See also:
Notes
ShellDKGT

This command is used to construct a ShellDKGT element object, which is a triangular shell element based on the
theory of generalized conforming element.

element ('ShellDKGT’, eleTag, *eleNodes, secTag)

eleTag unique element object tag
(int)
eleNodes| a list of three element nodes in clockwise or counter-clockwise order
(list (int))
secTag tag associated with previously-defined SectionForceDeformation object. currently can
(int) be a 'PlateFiberSection', a 'ElasticMembranePlateSection' and a
'LayeredShell' section
See also:
Notes
ShellINLDKGQ

This command is used to construct a SheINLDKGQ element object accounting for the geometric nonlinearity of large
deformation using the updated Lagrangian formula, which is developed based on the ShellDKGQ element.

40 Chapter 1. Author

http://opensees.berkeley.edu/wiki/index.php/Shell_Element
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://opensees.berkeley.edu/wiki/index.php/ShellDKGQ
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://opensees.berkeley.edu/wiki/index.php/ShellDKGT

OpenSeesPy Documentation, Release 1.0.0b1

element ('ShellNLDKGQ’, eleTag, *eleNodes, secTag)

eleTag unique element object tag
(int)
eleNodes| alist of four element nodes in counter-clockwise order
(list (int))
secTag tag associated with previously-defined SectionForceDeformation object. currently can
(int) be a 'PlateFiberSection', a 'ElasticMembranePlateSection' and a
'LayeredShell"' section
See also:
Notes
ShelINLDKGT

This command is used to construct a ShelINLDKGT element object accounting for the geometric nonlinearity of large
deformation using the updated Lagrangian formula, which is developed based on the ShelIDKGT element.

element (’ShellNLDKGT’, eleTag, *eleNodes, secTag)

eleTag unique element object tag
(int)
eleNodesg| a list of three element nodes in clockwise or counter-clockwise order around the element
(list (int))
secTag tag associated with previously-defined SectionForceDeformation object. currently can
(int) be a 'PlateFiberSection', a 'ElasticMembranePlateSection' and a
'LayeredShell' section
See also:
Notes
ShellNL

element (’ShellNL’, eleTag, *eleNodes, secTag)

eleTag unique element object tag
(int)
eleNodes| a list of nine element nodes, input is the typical, firstly four corner nodes counter-clockwise,
(list (int)) | then mid-side nodes counter-clockwise and finally the central node
secTag tag associated with previously-defined SectionForceDeformation object. currently can
(int) be a 'PlateFiberSection', a 'ElasticMembranePlateSection' and a
'LayeredShell' section
See also:

Notes

1.4. Model Commands 41

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://opensees.berkeley.edu/wiki/index.php/ShellNLDKGQ
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://opensees.berkeley.edu/wiki/index.php/ShellNLDKGT
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://opensees.berkeley.edu/wiki/index.php/ShellNL

OpenSeesPy Documentation, Release 1.0.0b1

Bbar Plane Strain Quadrilateral Element

This command is used to construct a four-node quadrilateral element object, which uses a bilinear isoparametric
formulation along with a mixed volume/pressure B-bar assumption. This element is for plane strain problems only.

element (’bbarQuad’, eleTag, *eleNodes, thick, matTag)

eleTag (int) unique element object tag

eleNodes (list (int)) | alist of four element nodes in counter-clockwise order
thick (float) element thickness

matTag (int) tag of nDMaterial

Note:
1. PlainStrain only.

2. The valid queries to a Quad element when creating an ElementRecorder object are ‘forces’, ‘stresses,” and
‘material $matNum matArgl matArg2 ... Where $matNum refers to the material object at the integration
point corresponding to the node numbers in the isoparametric domain.

See also:

Notes

Enhanced Strain Quadrilateral Element

This command is used to construct a four-node quadrilateral element, which uses a bilinear isoparametric formulation
with enhanced strain modes.

element (’enhancedQuad’, eleTag, *eleNodes, thick, type, matTag)

eleTag unique element object tag
(int)
eleNodes| alist of four element nodes in counter-clockwise order
(list (int))
thick element thickness
(float)
type string representing material behavior. Valid options depend on the NDMaterial object and
(str) its available material formulations. The type parameter can be either 'PlaneStrain’' or
'PlaneStress'
matTag tag of nDMaterial
(int)
See also:

Notes

SSPquad Element

This command is used to construct a SSPquad element object.

42 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
http://opensees.berkeley.edu/wiki/index.php/Bbar_Plane_Strain_Quadrilateral_Element
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
http://opensees.berkeley.edu/wiki/index.php/Enhanced_Strain_Quadrilateral_Element

OpenSeesPy Documentation, Release 1.0.0b1

element ('SSPquad’, eleTag, *eleNodes, matTag, type, thick[, bl, b2])

eleTag (int) unique element object tag

eleNodes (list | alist of four element nodes in counter-clockwise order

(int))

thick (float) thickness of the element in out-of-plane direction

type (str) string to relay material behavior to the element, can be either 'PlaneStrain' or
'PlaneStress'

matTag (int) unique integer tag associated with previously-defined nDMaterial object

bl b2 (float) constant body forces in global x- and y-directions, respectively (optional, default = 0.0)

The SSPquad element is a four-node quadrilateral element using physically stabilized single-point integration
(SSP —> Stabilized Single Point). The stabilization incorporates an assumed strain field in which the volu-
metric dilation and the shear strain associated with the the hourglass modes are zero, resulting in an element
which is free from volumetric and shear locking. The elimination of shear locking results in greater coarse
mesh accuracy in bending dominated problems, and the elimination of volumetric locking improves accuracy
in nearly-incompressible problems. Analysis times are generally faster than corresponding full integration el-
ements. The formulation for this element is identical to the solid phase portion of the SSPquadUP element as
described by McGann et al. (2012).

Note:

. Valid queries to the SSPquad element when creating an ElementalRecorder object correspond to those for the

nDMaterial object assigned to the element (e.g., ‘stress’, ‘strain’). Material response is recorded at the single
integration point located in the center of the element.

The SSPquad element was designed with intentions of duplicating the functionality of the Quad Element. If
an example is found where the SSPquad element cannot do something that works for the Quad Element, e.g.,
material updating, please contact the developers listed below so the bug can be fixed.

See also:

Notes

Tri31

Element

This command is used to construct a constant strain triangular element (Tri31) which uses three nodes and one inte-
gration points.

element ('Tri31’, eleTag, *eleNodes, thick, type, matTag[, pressure, rho, bl, b2])

1.4. Model Commands 43

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/SSPquad_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int) unique element object tag

eleNodes (list | alist of three element nodes in counter-clockwise order

(int))

thick (float) element thickness

type (str) string representing material behavior. The type parameter can be either
'PlaneStrain' or 'PlaneStress'

matTag (int) tag of nDMaterial

pressure surface pressure (optional, default = 0.0)

(float)

rho (float) element mass density (per unit volume) from which a lumped element mass matrix is
computed (optional, default=0.0)

bl b2 (float) constant body forces defined in the domain (optional, default=0.0)

Note:
1. Consistent nodal loads are computed from the pressure and body forces.

2. The valid queries to a Tri31 element when creating an ElementRecorder object are ‘forces’, ‘stresses,” and
‘material $matNum matArgl matArg2 ... Where $matNum refers to the material object at the integration
point corresponding to the node numbers in the domain.

See also:
Notes
Standard Brick Element

This element is used to construct an eight-node brick element object, which uses a trilinear isoparametric formulation.

element (’stdBrick’, eleTag, *eleNodes, matTag[, bl, b2, b3])

eleTag (int) unique element object tag

eleNodes (list (int)) | alist of eight element nodes in bottom and top faces and in counter-clockwise order
matTag (int) tag of nDMaterial

bl b2 b3 (float) body forces in global x,y,z directions

Note:

1. The valid queries to a Brick element when creating an ElementRecorder object are ‘forces’, ‘stresses,” (‘strains’
version > 2.2.0) and ‘material $matNum matArgl matArg2 ... Where $matNum refers to the material object
at the integration point corresponding to the node numbers in the isoparametric domain.

2. This element can only be defined in -ndm 3 -ndf 3

See also:

Notes

44 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Tri31_Element
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Standard_Brick_Element

OpenSeesPy Documentation, Release 1.0.0b1

Bbar Brick Element

This command is used to construct an eight-node mixed volume/pressure brick element object, which uses a trilinear
isoparametric formulation.

element (’bbarBrick’, eleTag, *eleNodes, matTag[, bl, b2, b3])

eleTag (int) unique element object tag

eleNodes (list (int)) | alist of eight element nodes in bottom and top faces and in counter-clockwise order
matTag (int) tag of nDMaterial

bl b2 b3 (float) body forces in global x,y,z directions

Note:
1. Node numbering for this element is different from that for the eight-node brick (Brick8N) element.

2. The valid queries to a Quad element when creating an ElementRecorder object are ‘forces’, ‘stresses’, ‘strains’,
and ‘material $matNum matArgl matArg2 ...” Where $matNum refers to the material object at the integration
point corresponding to the node numbers in the isoparametric domain.

See also:
Notes
Twenty Node Brick Element

The element is used to construct a twenty-node three dimensional element object

element (’Brick20N’, eleTag, *eleNodes, matTag, bf1, bf2, bf3, massDen)

eleTag (int) unique element object tag

eleNodes (list (int)) | alist of twenty element nodes, input order is shown in notes below
matTag (int) material tag associated with previsouly-defined NDMaterial object
bfl bf2 bf3 (float) | body force in the direction of global coordinates x, y and z
massDen (float) mass density (mass/volume)

Note: The valid queries to a Brick20N element when creating an ElementRecorder object are ‘force,” ‘stiffness,’
stress’, ‘gausspoint’ or ‘plastic’. The output is given as follows:

1. ‘stress’

the six stress components from each Gauss points are output by the order: sigma_xx, sigma_yy, sigma_zz,
sigma_xy, sigma_xz,sigma_yz

2. ‘gausspoint’
the coordinates of all Gauss points are printed out
3. ‘plastic’

the equivalent deviatoric plastic strain from each Gauss point is output in the same order as the coordinates are
printed

1.4. Model Commands 45

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Bbar_Brick_Element
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

See also:

Notes

SSPbrick Element

This command is used to construct a SSPbrick element object.

element ('SSPbrick’, eleTag, *eleNodes, matTag[, bl, b2, b3])

eleTag (int)

unique element object tag

eleNodes (list
(int))

a list of eight element nodes in bottom and top faces and in counter-clockwise order

matTag (int)

unique integer tag associated with previously-defined nDMaterial object

bl b2 b3 (float)

constant body forces in global x-, y-, and z-directions, respectively (optional, default
=0.0)

The SSPbrick element is an eight-node hexahedral element using physically stabilized single-point integration (SSP —
Stabilized Single Point). The stabilization incorporates an enhanced assumed strain field, resulting in an element which
is free from volumetric and shear locking. The elimination of shear locking results in greater coarse mesh accuracy in
bending dominated problems, and the elimination of volumetric locking improves accuracy in nearly-incompressible
problems. Analysis times are generally faster than corresponding full integration elements.

Note:

1. Valid queries to the SSPbrick element when creating an ElementalRecorder object correspond to those for the
nDMaterial object assigned to the element (e.g., ‘stress’, ‘strain’). Material response is recorded at the single
integration point located in the center of the element.

2. The SSPbrick element was designed with intentions of duplicating the functionality of the stdBrick Element. If
an example is found where the SSPbrick element cannot do something that works for the stdBrick Element, e.g.,
material updating, please contact the developers listed below so the bug can be fixed.

See also:

Notes

FourNodeTetrahedron

This command is used to construct a standard four-node tetrahedron element objec with one-point Gauss integration.

element (’FourNodeTetrahedron’, eleTag, *eleNodes, matTag[, bl, b2, b3])

eleTag (int) unique element object tag
eleNodes (list (int)) | alist of four element nodes
matTag (int) tag of nDMaterial
bl b2 b3 (float) body forces in global x,y,z directions
See also:
Notes
46 Chapter 1. Author

http://opensees.berkeley.edu/OpenSees/manuals/usermanual/734.htm
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/SSPbrick_Element
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/FourNodeTetrahedron

OpenSeesPy Documentation, Release 1.0.0b1

Four Node Quad u-p Element

FourNodeQuadUP is a four-node plane-strain element using bilinear isoparametric formulation. This element is im-
plemented for simulating dynamic response of solid-fluid fully coupled material, based on Biot’s theory of porous
medium. Each element node has 3 degrees-of-freedom (DOF): DOF 1 and 2 for solid displacement (u) and DOF 3 for
fluid pressure (p).

element (7, eleTag, *eleNodes, thick, matTag, bulk, fmass, hPerm, vPerm[, b1=0, b2=0, t=0])

eleTag | unique element object tag
(int)
eleNodgsa list of four element nodes in counter-clockwise order
(list

(int))

thick Element thickness

(float)

matTag | Tag of an NDMaterial object (previously defined) of which the element is composed

(int)

bulk Combined undrained bulk modulus Bc relating changes in pore pressure and volumetric strain,

(float) may be approximated by: B, ~ By /n

where B is the bulk modulus of fluid phase (2.2 x 10% kPa (or 3.191 x 10° psi) for water), and
n the initial porosity.

fmass Fluid mass density

(float)
hPerm, | Permeability coefficient in horizontal and vertical directions respectively.
vPerm
(float)
bl, b2 | Optional gravity acceleration components in horizontal and vertical directions respectively (de-
(float) faults are 0.0)

t (float) | Optional uniform element normal traction, positive in tension (default is 0.0)

See also:

Notes

Brick u-p Element

BrickUP is an 8-node hexahedral linear isoparametric element. Each node has 4 degrees-of-freedom (DOF): DOFs 1
to 3 for solid displacement (u) and DOF 4 for fluid pressure (p). This element is implemented for simulating dynamic
response of solid-fluid fully coupled material, based on Biot’s theory of porous medium.

element (’brickUP’, eleTag, *eleNodes, matTag, bulk, fmass, PermX, PermY, PermZ[, bX=0, bY=0, bZ=0])

1.4. Model Commands 47

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Four_Node_Quad_u-p_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag unique element object tag

(int)

eleNodes | alist of eight element nodes

(list (int))

matTag Tag of an NDMaterial object (previously defined) of which the element is composed

(int)

bulk Combined undrained bulk modulus Bc relating changes in pore pressure and volumetric strain,

(float) may be approximated by: B, ~ By /n
where By is the bulk modulus of fluid phase (2.2 x 108 kPa (or 3.191 x 10° psi) for water),
and n the initial porosity.

fmass Fluid mass density

(float)

permX, Permeability coefficients in X, y, and z directions respectively.

permY,

permz

(float)

bX, bY, bZ | Optional gravity acceleration components in X, y, and z directions directions respectively (de-

(float) faults are 0.0)

See also:

Notes

BbarQuad u-p Element

bbarQuadUP is a four-node plane-strain mixed volume/pressure element, which uses a tri-linear isoparametric for-
mulation. This element is implemented for simulating dynamic response of solid-fluid fully coupled material, based
on Biot’s theory of porous medium. Each element node has 3 degrees-of-freedom (DOF): DOF 1 and 2 for solid
displacement (u) and DOF 3 for fluid pressure (p).

element (’bbarQuadUP’, eleTag, *eleNodes, thick, matTag, bulk, fmass, hPerm, vPerm[, bl1=0, b2=0, t:O])

48

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Brick_u-p_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag | unique element object tag
(int)
eleNodesa list of four element nodes in counter-clockwise order
(list
(int))
thick Element thickness
(float)
matTag | Tag of an NDMaterial object (previously defined) of which the element is composed
(int)
bulk Combined undrained bulk modulus Bc relating changes in pore pressure and volumetric strain,
(float) may be approximated by: B, ~ By /n
where B is the bulk modulus of fluid phase (2.2 x 10% kPa (or 3.191 x 10° psi) for water), and
n the initial porosity.
fmass Fluid mass density
(float)
hPerm, | Permeability coefficient in horizontal and vertical directions respectively.
vPerm
(float)
bl, b2 | Optional gravity acceleration components in horizontal and vertical directions respectively (de-
(float) faults are 0.0)
t (float) | Optional uniform element normal traction, positive in tension (default is 0.0)
See also:

Notes

BbarBrick u-p Element

bbarBrickUP is a 8-node mixed volume/pressure element, which uses a tri-linear isoparametric formulation.

Each node has 4 degrees-of-freedom (DOF): DOFs 1 to 3 for solid displacement (u) and DOF 4 for fluid pressure (p).
This element is implemented for simulating dynamic response of solid-fluid fully coupled material, based on Biot’s
theory of porous medium.

element (’bbarBrickUP’, eleTag, *eleNodes, matTag, bulk, fmass, PermX, PermY, PermZ[, bX=0, bY=0,
bZ=0])

1.4. Model Commands 49

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/BbarQuad_u-p_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag unique element object tag

(int)

eleNodes | alist of eight element nodes

(list (int))

matTag Tag of an NDMaterial object (previously defined) of which the element is composed

(int)

bulk Combined undrained bulk modulus Bc relating changes in pore pressure and volumetric strain,
(float) may be approximated by: B, ~ By /n

where By is the bulk modulus of fluid phase (2.2 x 108 kPa (or 3.191 x 10° psi) for water),
and n the initial porosity.

fmass Fluid mass density

(float)
permX, Permeability coefficients in X, y, and z directions respectively.
permY,
permz
(float)
bX, bY, bZ | Optional gravity acceleration components in X, y, and z directions directions respectively (de-
(float) faults are 0.0)

See also:

Notes

Nine Four Node Quad u-p Element

Nine_Four_Node_QuadUP is a 9-node quadrilateral plane-strain element. The four corner nodes have 3 degrees-of-
freedom (DOF) each: DOF 1 and 2 for solid displacement (u) and DOF 3 for fluid pressure (p). The other five nodes
have 2 DOFs each for solid displacement. This element is implemented for simulating dynamic response of solid-fluid
fully coupled material, based on Biot’s theory of porous medium.

element ('9_4_QuadUP’, eleTag, *eleNodes, thick, matTag, bulk, fimass, hPerm, vPerm[, bl1=0, b2=0])

eleTag | unique element object tag
(int)
eleNodefsa list of nine element nodes
(list
(int))
thick Element thickness
(float)
matTag | Tag of an NDMaterial object (previously defined) of which the element is composed
(int)
bulk Combined undrained bulk modulus Bc relating changes in pore pressure and volumetric strain,
(float) may be approximated by: B, ~ By /n

where By is the bulk modulus of fluid phase (2.2 x 10° kPa (or 3.191 x 10° psi) for water), and
n the initial porosity.

fmass Fluid mass density

(float)
hPerm, | Permeability coefficient in horizontal and vertical directions respectively.
vPerm
(float)
bl, b2 | Optional gravity acceleration components in horizontal and vertical directions respectively (de-
(float) faults are 0.0)

50 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/BbarBrick_u-p_Element
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

See also:

Notes

Twenty Eight Node Brick u-p Element

wenty_Eight_Node_BrickUP is a 20-node hexahedral isoparametric element.

The eight corner nodes have 4 degrees-of-freedom (DOF) each: DOFs 1 to 3 for solid displacement (u) and DOF 4
for fluid pressure (p). The other nodes have 3 DOFs each for solid displacement. This element is implemented for
simulating dynamic response of solid-fluid fully coupled material, based on Biot’s theory of porous medium.

element (’bbarBrickUP’, eleTag, *eleNodes, matTag, bulk, fmass, PermX, PermY, PermZ[, bX=0, bY=0,

bZ=0])
eleTag unique element object tag
(int)
eleNodes | alist of twenty element nodes
(list (int))
matTag Tag of an NDMaterial object (previously defined) of which the element is composed
(int)
bulk Combined undrained bulk modulus Bc relating changes in pore pressure and volumetric strain,
(float) may be approximated by: B. ~ By /n
where By is the bulk modulus of fluid phase (2.2 x 10° kPa (or 3.191 x 105 psi) for water),
and n the initial porosity.
fmass Fluid mass density
(float)
permX, Permeability coefficients in X, y, and z directions respectively.
permY,
permz
(float)
bX, bY, bZ | Optional gravity acceleration components in X, y, and z directions directions respectively (de-
(float) faults are 0.0)
See also:
Notes

SSPquadUP Element

This command is used to construct a SSPquadUP element object.

element ('SSPquadUP’, eleTag, *eleNodes, matTag, thick, fBulk, fDen, ki1, k2, void, alpha[, bl, b2])

1.4. Model Commands 51

http://opensees.berkeley.edu/wiki/index.php/Nine_Four_Node_Quad_u-p_Element
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Twenty_Eight_Node_Brick_u-p_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int) unique element object tag

eleNodes (list | alist of four element nodes in counter-clockwise order

(int))

matTag (int) unique integer tag associated with previously-defined nDMaterial object

thick (float) thickness of the element in out-of-plane direction

fBulk (float) bulk modulus of the pore fluid

fDen (float) mass density of the pore fluid

k1 k2 (float) permeability coefficients in global x- and y-directions, respectively

void (float) voids ratio

alpha (float) spatial pressure field stabilization parameter (see discussion below for more informa-
tion)

bl b2 (float) constant body forces in global x- and y-directions, respectively (optional, default =
0.0) - See Note 3

The SSPquadUP element is an extension of the SSPquad Element for use in dynamic plane strain
analysis of fluid saturated porous media. A mixed displacement-pressure (u-p) formulation is used,
based upon the work of Biot as extended by Zienkiewicz and Shiomi (1984).

The physical stabilization necessary to allow for reduced integration incorporates an assumed strain field in which the
volumetric dilation and the shear strain associated with the the hourglass modes are zero, resulting in an element which
is free from volumetric and shear locking. The elimination of shear locking results in greater coarse mesh accuracy in
bending dominated problems, and the elimination of volumetric locking improves accuracy in nearly-incompressible
problems. Analysis times are generally faster than corresponding full integration elements.

Equal-order interpolation is used for the displacement and pressure fields, thus, the SSPquadUP element does not
inherently pass the inf-sup condition, and is not fully acceptable in the incompressible-impermeable limit (the QuadUP
Element has the same issue). A stabilizing parameter is employed to permit the use of equal-order interpolation for
the SSPquadUP element. This parameter $alpha can be computed as

a = 0.25 % (h?)/(den * ¢*)

where h is the element size, c is the speed of elastic wave propagation in the solid phase, and den is the mass density
of the solid phase. The $alpha parameter should be a small number. With a properly defined $alpha parameter, the
SSPquadUP element can produce comparable results to a higher-order element such as the 9_4_QuadUP Element at a
significantly lower computational cost and with a greater ease in mesh generation.

The full formulation for the SSPquadUP element can be found in McGann et al. (2012) along with several example
applications.

Note:
1. The SSPquadUP element will only work in dynamic analysis.

2. For saturated soils, the mass density input into the associated nDMaterial object should be the saturated mass
density.

3. When modeling soil, the body forces input into the SSPquadUP element should be the components of the
gravitational vector, not the unit weight.

4. Fixing the pore pressure degree-of-freedom (dof 3) at a node is a drainage boundary condition at which zero
pore pressure will be maintained throughout the analysis. Leaving the third dof free allows pore pressures to
build at that node.

5. Valid queries to the SSPquadUP element when creating an ElementalRecorder object correspond to those for
the nDMaterial object assigned to the element (e.g., ‘stress’, ‘strain’). Material response is recorded at the single
integration point located in the center of the element.

52 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

6. The SSPquadUP element was designed with intentions of duplicating the functionality of the QuadUP Element.
If an example is found where the SSPquadUP element cannot do something that works for the QuadUP Element,
e.g., material updating, please contact the developers listed below so the bug can be fixed.

See also:

Notes

SSPbrickUP Element

This command is used to construct a SSPbrickUP element object.

element ('SSPbrickUP’, eleTag, *eleNodes, matTag, fBulk, fDen, ki, k2, k3, void, alpha[, bl, b2, b3])

eleTag (int) unique element object tag

eleNodes (list | alist of eight element nodes in counter-clockwise order

(int))

matTag (float) unique integer tag associated with previously-defined nDMaterial object

fBulk (float) bulk modulus of the pore fluid

fDen (float) mass density of the pore fluid

k1l k2 k3 (float) permeability coefficients in global x-, y-, and z-directions, respectively

void (float) voids ratio

alpha (float) spatial pressure field stabilization parameter (see discussion below for more informa-
tion)

bl b2 b3 (float) constant body forces in global x-, y-, and z-directions, respectively (optional, default =
0.0) - See Note 3

The SSPbrickUP element is an extension of the SSPbrick Element for use in dynamic 3D analysis of fluid saturated
porous media. A mixed displacement-pressure (u-p) formulation is used, based upon the work of Biot as extended by
Zienkiewicz and Shiomi (1984).

The physical stabilization necessary to allow for reduced integration incorporates an enhanced assumed strain field,
resulting in an element which is free from volumetric and shear locking. The elimination of shear locking results in
greater coarse mesh accuracy in bending dominated problems, and the elimination of volumetric locking improves
accuracy in nearly-incompressible problems. Analysis times are generally faster than corresponding full integration
elements.

Equal-order interpolation is used for the displacement and pressure fields, thus, the SSPbrickUP element does not
inherently pass the inf-sup condition, and is not fully acceptable in the incompressible-impermeable limit (the brickUP
Element has the same issue). A stabilizing parameter is employed to permit the use of equal-order interpolation for
the SSPbrickUP element. This parameter $alpha can be computed as

a=h%/(4% (K, + (4/3) xGy))

where h is the element size, and K and G are the bulk and shear moduli for the solid phase. The « parameter should
be a small number. With a properly defined o parameter, the SSPbrickUP element can produce comparable results
to a higher-order element such as the 20_8_BrickUP Element at a significantly lower computational cost and with a
greater ease in mesh generation.

Note:

1. The SSPbrickUP element will only work in dynamic analysis.

1.4. Model Commands 53

http://opensees.berkeley.edu/wiki/index.php/SSPquadUP_Element
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

2. For saturated soils, the mass density input into the associated nDMaterial object should be the saturated mass
density.

3. When modeling soil, the body forces input into the SSPbrickUP element should be the components of the
gravitational vector, not the unit weight.

4. Fixing the pore pressure degree-of-freedom (dof 4) at a node is a drainage boundary condition at which zero
pore pressure will be maintained throughout the analysis. Leaving the fourth dof free allows pore pressures to
build at that node.

5. Valid queries to the SSPbrickUP element when creating an ElementalRecorder object correspond to those for
the nDMaterial object assigned to the element (e.g., ‘stress’, ‘strain’). Material response is recorded at the single
integration point located in the center of the element.

6. The SSPbrickUP element was designed with intentions of duplicating the functionality of the brickUP Element.
If an example is found where the SSPbrickUP element cannot do something that works for the brickUP Element,
e.g., material updating, please contact the developers listed below so the bug can be fixed.

See also:
Notes
SimpleContact2D

This command is used to construct a SimpleContact2D element object.

element (’'SimpleContact2D’, eleTag, iNode, jNode, sNode, INode, matTag, gTol, fTol)

eleTag (int) unique element object tag

iNode jNode (int) | master nodes (-ndm 2 -ndf 2)

sNode (int) slave node (-ndm 2 -ndf 2)

1Node (int) Lagrange multiplier node (-ndm 2 -ndf 2)

matTag (int) unique integer tag associated with previously-defined nDMaterial object
gTol (float) gap tolerance

fTol (float) force tolerance

The SimpleContact2D element is a two-dimensional node-to-segment contact element which defines a frictional con-
tact interface between two separate bodies. The master nodes are the nodes which define the endpoints of a line
segment on the first body, and the slave node is a node from the second body. The Lagrange multiplier node is
required to enforce the contact condition. This node should not be shared with any other element in the domain.
Information on the theory behind this element can be found in, e.g. Wriggers (2002).

Note:

1. The SimpleContact2D element has been written to work exclusively with the ContactMaterial2D nDMaterial
object.

2. The valid recorder queries for this element are:
(a) force - returns the contact force acting on the slave node in vector form.
(b) frictionforce - returns the frictional force acting on the slave node in vector form.

(c) forcescalar - returns the scalar magnitudes of the normal and tangential contact forces.

54 Chapter 1. Author

http://opensees.berkeley.edu/wiki/index.php/SSPbrickUP_Element
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

(d) The SimpleContact2D elements are set to consider frictional behavior as a default, but the frictional state
of the SimpleContact2D element can be changed from the input file using the setParameter command.
When updating, value of 0 corresponds to the frictionless condition, and a value of 1 signifies the inclusion
of friction. An example command for this update procedure is provided below

3. The SimpleContact2D element works well in static and pseudo-static analysis situations.

4. In transient analysis, the presence of the contact constraints can effect the stability of commonly-used time
integration methods in the HHT or Newmark family (e.g., Laursen, 2002). For this reason, use of alternative
time-integration methods which numerically damp spurious high frequency behavior may be required. The
TRBDEF?2 integrator is an effective method for this purpose. The Newmark integrator can also be effective with
proper selection of the gamma and beta coefficients. The trapezoidal rule, i.e., Newmark with gamma = 0.5 and
beta = 0.25, is particularly prone to instability related to the contact constraints and is not recommended.

See also:
Notes
SimpleContact3D

This command is used to construct a SimpleContact3D element object.

element (’'SimpleContact3D’, eleTag, iNode, jNode, kNode, INode, sNode, LNode, matTag, gTol, fTol)

eleTag (int) unique element object tag

iNode jNode kNode 1Node | master nodes (-ndm 3 -ndf 3)

(int)

sNode (int) slave node (-ndm 3 -ndf 3)

LNode (int) Lagrange multiplier node (-ndm 3 -ndf 3)

matTag (int) unique integer tag associated with previously-defined nDMaterial ob-
ject

gTol (float) gap tolerance

fTol (float) force tolerance

The SimpleContact3D element is a three-dimensional node-to-surface contact element which defines a frictional con-
tact interface between two separate bodies. The master nodes are the nodes which define a surface of a hexahedral
element on the first body, and the slave node is a node from the second body. The Lagrange multiplier node is required
to enforce the contact condition. This node should not be shared with any other element in the domain. Information
on the theory behind this element can be found in, e.g. Wriggers (2002).

Note:

1. The SimpleContact3D element has been written to work exclusively with the ContactMaterial3D nDMaterial
object.

2. The valid recorder queries for this element are:
(a) force - returns the contact force acting on the slave node in vector form.
(b) frictionforce - returns the frictional force acting on the slave node in vector form.
(c) forcescalar - returns the scalar magnitudes of the single normal and two tangential contact forces.

(d) The SimpleContact3D elements are set to consider frictional behavior as a default, but the frictional state
of the SimpleContact3D element can be changed from the input file using the setParameter command.

1.4. Model Commands 55

http://opensees.berkeley.edu/wiki/index.php/SimpleContact2D
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

When updating, value of O corresponds to the frictionless condition, and a value of 1 signifies the inclusion
of friction. An example command for this update procedure is provided below

3. The SimpleContact3D element works well in static and pseudo-static analysis situations.

4. In transient analysis, the presence of the contact constraints can effect the stability of commonly-used time
integration methods in the HHT or Newmark family (e.g., Laursen, 2002). For this reason, use of alternative
time-integration methods which numerically damp spurious high frequency behavior may be required. The
TRBDEF?2 integrator is an effective method for this purpose. The Newmark integrator can also be effective with
proper selection of the gamma and beta coefficients. The trapezoidal rule, i.e., Newmark with gamma = 0.5 and
beta = 0.25, is particularly prone to instability related to the contact constraints and is not recommended.

See also:
Notes
BeamContact2D

This command is used to construct a BeamContact2D element object.

element (’'BeamContact2D’, eleTag, matTag, width, gTol,fTol[, cFlag])

eleTag unique element object tag

(int)

iNode master nodes (-ndm 2 -ndf 3)

jNode

(int)

sNode slave node (-ndm 2 -ndf 2)

(int)

1Node Lagrange multiplier node (-ndm 2 -ndf 2)

(int)

matTag unique integer tag associated with previously-defined nDMaterial object

(int)

width the width of the wall represented by the beam element in plane strain

(float)

gTol gap tolerance

(float)

fTol force tolerance

(float)

cFlag optional initial contact flag

(int) cFlag =0 >> contact between bodies is initially assumed (DEFAULT)
cFlag =1 >>no contact between bodies is initially assumed

The BeamContact2D element is a two-dimensional beam-to-node contact element which defines a frictional contact
interface between a beam element and a separate body. The master nodes (3 DOF) are the endpoints of the beam
element, and the slave node (2 DOF) is a node from a second body. The Lagrange multiplier node (2 DOF) is required
to enforce the contact condition. Each contact element should have a unique Lagrange multiplier node. The Lagrange
multiplier node should not be fixed, otherwise the contact condition will not work.

Under plane strain conditions in 2D, a beam element represents a unit thickness of a wall. The width is the dimension
of this wall in the 2D plane. This width should be built-in to the model to ensure proper enforcement of the con-
tact condition. The Excavation Supported by Cantilevered Sheet Pile Wall practical example provides some further
examples and discussion on the usage of this element.

56 Chapter 1. Author

http://opensees.berkeley.edu/wiki/index.php/SimpleContact3D
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

Note:

1. The BeamContact2D element has been written to work exclusively with the ContactMaterial2D nDMaterial
object.

2. The valid recorder queries for this element are:
(a) force - returns the contact force acting on the slave node in vector form.
(b) frictionforce - returns the frictional force acting on the slave node in vector form.
(c) forcescalar - returns the scalar magnitudes of the normal and tangential contact forces.
(d) masterforce - returns the reactions (forces and moments) acting on the master nodes.

(e) The BeamContact2D elements are set to consider frictional behavior as a default, but the frictional state of
the BeamContact2D element can be changed from the input file using the setParameter command. When
updating, value of O corresponds to the frictionless condition, and a value of 1 signifies the inclusion of
friction. An example command for this update procedure is provided below

3. The BeamContact2D element works well in static and pseudo-static analysis situations.

4. In transient analysis, the presence of the contact constraints can effect the stability of commonly-used time
integration methods in the HHT or Newmark family (e.g., Laursen, 2002). For this reason, use of alternative
time-integration methods which numerically damp spurious high frequency behavior may be required. The
TRBDF?2 integrator is an effective method for this purpose. The Newmark integrator can also be effective with
proper selection of the gamma and beta coefficients. The trapezoidal rule, i.e., Newmark with gamma = 0.5 and
beta = 0.25, is particularly prone to instability related to the contact constraints and is not recommended.

See also:

Notes

BeamContact3D

This command is used to construct a BeamContact3D element object.

element (’'BeamContact3D’, eleTag, iNode, jNode, sNode, INode, radius, crdTransf, matTag, gTol, fTol[,
cFlag])

1.4. Model Commands 57

http://opensees.berkeley.edu/wiki/index.php/BeamContact2D

OpenSeesPy Documentation, Release 1.0.0b1

eleTag unique element object tag

(int)

iNode master nodes (-ndm 3 -ndf 6)

jNode

(int)

sNode slave node (-ndm 3 -ndf 3)

(int)

1Node Lagrange multiplier node (-ndm 3 -ndf 3)

(int)

radius constant radius of circular beam associated with beam element

(float)

crdTransf| unique integer tag associated with previously-defined geometricTransf object

(int)

matTag unique integer tag associated with previously-defined nDMaterial object

(int)

gTol gap tolerance

(float)

fTol force tolerance

(float)

cFlag optional initial contact flag

(int) cFlag =0 >> contact between bodies is initially assumed (DEFAULT)
cFlag =1 >>no contact between bodies is initially assumed

The BeamContact3D element is a three-dimensional beam-to-node contact element which defines a frictional contact
interface between a beam element and a separate body. The master nodes (6 DOF) are the endpoints of the beam
element, and the slave node (3 DOF) is a node from a second body. The Lagrange multiplier node (3 DOF) is required
to enforce the contact condition. Each contact element should have a unique Lagrange multiplier node. The Lagrange
multiplier node should not be fixed, otherwise the contact condition will not work.

Note:

1. The BeamContact3D element has been written to work exclusively with the ContactMaterial3D nDMaterial
object.

2. The valid recorder queries for this element are:
(a) force - returns the contact force acting on the slave node in vector form.
(b) frictionforce - returns the frictional force acting on the slave node in vector form.
(c) forcescalar - returns the scalar magnitudes of the single normal and two tangential contact forces.
(d) masterforce - returns the reactions (forces only) acting on the master nodes.
(e) mastermoment - returns the reactions (moments only) acting on the master nodes.
(f) masterreaction - returns the full reactions (forces and moments) acting on the master nodes.

(g) The BeamContact3D elements are set to consider frictional behavior as a default, but the frictional state of
the BeamContact3D element can be changed from the input file using the setParameter command. When
updating, value of 0 corresponds to the frictionless condition, and a value of 1 signifies the inclusion of
friction. An example command for this update procedure is provided below

3. The BeamContact3D element works well in static and pseudo-static analysis situations.

4. In transient analysis, the presence of the contact constraints can effect the stability of commonly-used time
integration methods in the HHT or Newmark family (e.g., Laursen, 2002). For this reason, use of alternative
time-integration methods which numerically damp spurious high frequency behavior may be required. The

58 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

TRBDF?2 integrator is an effective method for this purpose. The Newmark integrator can also be effective with
proper selection of the gamma and beta coefficients. The trapezoidal rule, i.e., Newmark with gamma = 0.5 and
beta = 0.25, is particularly prone to instability related to the contact constraints and is not recommended.

See also:

Notes

BeamEndContact3D

This command is used to construct a BeamEndContact3D element object.

element (’'BeamEndContact3D’, eleTag, iNode, jNode, sNode, INode, radius, gTol,fTol[, cFlag])

eleTag | unique element object tag

(int)

iNode master node from the beam (-ndm 3 -ndf 6)

(int)

jNode the remaining node on the beam element with iNode (-ndm 3 -ndf 6)

(int)

sNode slave node (-ndm 3 -ndf 3)

(int)

1Node Lagrange multiplier node (-ndm 3 -ndf 3)

(int)

radius | radius of circular beam associated with beam element

(float)

gTol gap tolerance

(float)

fTol force tolerance

(float)

cFlag optional initial contact flag

(float) cFlag = 0 >> contact between bodies is initially assumed (DEFAULT) cFlagl =1 >> no
contact between bodies is initially assumed

The BeamEndContact3D element is a node-to-surface contact element which defines a normal contact interface be-
tween the end of a beam element and a separate body. The first master node ($iNode) is the beam node which is at the
end of the beam (i.e. only connected to a single beam element), the second node ($jNode) is the remaining node on
the beam element in question. The slave node is a node from a second body. The Lagrange multiplier node is required
to enforce the contact condition. This node should not be shared with any other element in the domain, and should be
created with the same number of DOF as the slave node.

The BeamEndContact3D element enforces a contact condition between a fictitious circular plane associated with a
beam element and a node from a second body. The normal direction of the contact plane coincides with the endpoint
tangent of the beam element at the master beam node ($iNode). The extents of this circular plane are defined by
the radius input parameter. The master beam node can only come into contact with a slave node which is within the
extents of the contact plane. There is a lag step associated with changing between the ‘in contact’ and ‘not in contact’
conditions.

This element was developed for use in establishing a contact condition for the tip of a pile modeled as using beam
elements and the underlying soil elements in three-dimensional analysis.

Note:

1.4. Model Commands 59

http://opensees.berkeley.edu/wiki/index.php/BeamContact3D
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

1. The BeamEndContact3D element does not use a material object.
2. The valid recorder queries for this element are:
(a) force - returns the contact force acting on the slave node in vector form.
(b) masterforce - returns the reactions (forces and moments) acting on the master node.
(c) The BeamEndContact3D element works well in static and pseudo-static analysis situations.

3. In transient analysis, the presence of the contact constraints can effect the stability of commonly-used time
integration methods in the HHT or Newmark family (e.g., Laursen, 2002). For this reason, use of alternative
time-integration methods which numerically damp spurious high frequency behavior may be required. The
TRBDF?2 integrator is an effective method for this purpose. The Newmark integrator can also be effective with
proper selection of the gamma and beta coefficients. The trapezoidal rule, i.e., Newmark with gamma = 0.5 and
beta = 0.25, is particularly prone to instability related to the contact constraints and is not recommended.

See also:

Notes

CatenaryCableElement

This command is used to construct a catenary cable element object.

element (’CatenaryCable’, eleTag, iNode, jNode, weight, E, A, L0, alpha, temperature_change, rho, errorTol,
Nsubsteps, massType)

eleTag (int) unique element object tag

iNode jNode (int) end nodes (3 dof per node)

E (float) elastic modulus of the cable material

A (float) cross-sectional area of element

L0 (float) unstretched length of the cable

alpha (float) coefficient of thermal expansion

temperature_changtemperature change for the element

(float)

rho (float) mass per unit length

errortol (float) allowed tolerance for within-element equilbrium (Newton-Rhapson iterations)

Nsubsteps (int) number of within-element substeps into which equilibrium iterations are subdi-
vided (not number of steps to convergence)

massType (int) Mass matrix model to use (massType = 0 lumped mass matrix, massType = 1
rigid-body mass matrix (in development))

This cable is a flexibility-based formulation of the catenary cable. An iterative scheme is used internally to compute
equilibrium. At each iteration, node i is considered fixed while node j is free. End-forces are applied at node-j and
its displacements computed. Corrections to these forces are applied iteratively using a Newton-Rhapson scheme (with
optional sub-stepping via $Nsubsteps) until nodal displacements are within the provided tolerance ($errortol). When
convergence is reached, a stiffness matrix is computed by inversion of the flexibility matrix and rigid-body mode
injection.

Note:

1. The stiffness of the cable comes from the large-deformation interaction between loading and cable shape. There-
fore, all cables must have distributed forces applied to them. See example. Should not work for only nodal
forces.

60 Chapter 1. Author

http://opensees.berkeley.edu/wiki/index.php/BeamEndContact3D
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

2. Valid queries to the CatenaryCable element when creating an ElementalRecorder object correspond to ‘forces’,
which output the end-forces of the element in global coordinates (3 for each node).

3. Only the lumped-mass formulation is currently available.

4. The element does up 100 internal iterations. If convergence is not achieved, will result in error and some
diagnostic information is printed out.

See also:
Notes
SurfacelLoad Element

This command is used to construct a SurfaceLoad element object.

element (’SurfaceLoad’, eleTag, *eleNodes, p)

eleTag (int) unique element object tag

eleNodes (list | the four nodes defining the element, input in counterclockwise order (-ndm 3 -ndf

(int)) 3

p (float) applied pressure loading normal to the surface, outward is positive, inward is nega-
tive

The SurfaceLoad element is a four-node element which can be used to apply surface pressure loading to 3D brick
elements. The Surfacel.oad element applies energetically-conjugate forces corresponding to the input scalar pressure
to the nodes associated with the element. As these nodes are shared with a 3D brick element, the appropriate nodal
loads are therefore applied to the brick.

Note:

1. There are no valid ElementalRecorder queries for the SurfaceLoad element. Its sole purpose is to apply nodal
forces to the adjacent brick element.

2. The pressure loading from the Surfacel.oad element can be applied in a load pattern. See the analysis example
below.

See also:

Notes

VS3D4

This command is used to construct a four-node 3D viscous-spring boundary quad element object based on a bilinear
isoparametric formulation.

element ('VS3D4’, eleTag, *eleNodes, E, G, rho, R, alphaN, alphaT)

1.4. Model Commands 61

http://opensees.berkeley.edu/wiki/index.php/CatenaryCableElement
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/SurfaceLoad_Element

OpenSeesPy Documentation, Release 1.0.0b1

eleTag (int) unique element object tag

eleNodes (list (int)) | 4 end nodes

E (float) Young’s Modulus of element material

G (float) Shear Modulus of element material

rho (float) Mass Density of element material

R (float) distance from the scattered wave source to the boundary
alphal (float) correction parameter in the normal direction

alphaT (float) correction parameter in the tangential direction

Note: Reference: Liu J, Du Y, Du X, et al. 3D viscous-spring artificial boundary in time domain. Earthquake
Engineering and Engineering Vibration, 2006, 5(1):93-102

See also:

Notes

AC3D8

This command is used to construct an eight-node 3D brick acoustic element object based on a trilinear isoparametric
formulation.

element ('AC3DS8’, eleTag, *eleNodes, matTag)

eleTag (int) unique element object tag
eleNdoes (list (int)) | 8 end nodes
matTag (int) Material Tag of previously defined nD material

Note: Reference: ABAQUS theory manual. (2.9.1 Coupled acoustic-structural medium analysis)

See also:

Notes

ASI3D8

This command is used to construct an eight-node zero-thickness 3D brick acoustic-structure interface element object
based on a bilinear isoparametric formulation. The nodes in the acoustic domain share the same coordinates with the
nodes in the solid domain.

element (’ASI3DS8’, eleTag, *eleNodesl, *eleNodes2)

eleTag (int) unique element object tag
xeleNodes" (list (int)) | four nodes defining structure domain of element boundaries
xeleNodes?2 (list (int)) | four nodes defining acoustic domain of element boundaries

62 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/VS3D4
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://opensees.berkeley.edu/wiki/index.php/AC3D8
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

Note: Reference: ABAQUS theory manual. (2.9.1 Coupled acoustic-structural medium analysis)

See also:

Notes

AV3D4

This command is used to construct a four-node 3D acoustic viscous boundary quad element object based on a bilinear

isoparametric formulation.

element (AV3D4’, eleTag, *eleNodes, matTag)

eleTag (int) unique element object tag

eleNodes (list (int)) | 4 end nodes

matTag (int) Material Tag of previously defined nD material
See also:
Notes

1.4.3 node command

node (nodeTag, *crds, ’-ndf’, ndf, ’-mass’, *mass, ’-disp’, *disp, ’-vel’, *vel, ’-accel’, *accel)

Create a OpenSees node.

nodeTag (int)

node tag.

crds (list (float))

nodal coordinates.

ndf (float)

nodal ndf. (optional)

mass (list (float))

nodal mass. (optional)

vel (list (float))

nodal velocities. (optional)

accel (list (float))

nodal accelerations. (optional)

1.4.4 sp constraint commands

Create constraints for a single dof of a node.

fix command

f£ix (nodeTag, *constrValues)
Create a homogeneous SP constriant.

nodeTag (int)

tag of node to be constrained

constrValues (list (int))

a list of constraint values (0 or 1), must be preceded
with *.

e 0O free

e 1 fixed

1.4. Model Commands

63

http://opensees.berkeley.edu/wiki/index.php/ASI3D8
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://opensees.berkeley.edu/wiki/index.php/AV3D4
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

For example,

fully fixed
vals = [1,1,1]
fix (nodeTag, =*vals)

fixX command

£ixX (x, *constrValues, ’-tol’, tol=1e-10)
Create homogeneous SP constriants.

x (float)

x-coordinate of nodes to be constrained

constrValues (list (int))

a list of constraint values (0 or 1), must be preceded
with *.

e O free

e 1 fixed

tol (float)

user-defined tolerance (optional)

fixY command

£ixY (y, *constrValues, ’-tol’, tol=1e-10)
Create homogeneous SP constriants.

y (float)

y-coordinate of nodes to be constrained

constrValues (list (int))

a list of constraint values (0 or 1), must be preceded
with .

e 0 free

e 1 fixed

tol (float)

user-defined tolerance (optional)

fixZ command

£ixZ (z, *constrValues, ’-tol’, tol=1e-10)
Create homogeneous SP constriants.

z (float)

z-coordinate of nodes to be constrained

constrValues (list (int))

a list of constraint values (0 or 1), must be preceded
with *.

e O free

e 1 fixed

tol (float)

user-defined tolerance (optional)

1.4.5 mp constraint commands

Create constraints for multiple dofs of multiple nodes.

64

Chapter 1. Author

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

equalDOF command

equalDOF (rNodelag, cNodeTag, *dofs)
Create a multi-point constraint between nodes.

rNodeTag integer tag identifying the retained, or master node.
(int)
cNodeTag integer tag identifying the constrained, or slave node.

(int)

dofs nodal degrees-of-freedom that are constrained at the cNode to be the same as those at the rNode
(list Valid range is from 1 through ndf, the number of nodal degrees-of-freedom.

(int))

equalDOF_Mixed command

equalDOF_Mixed (rNodelag, cNodeTag, numDOF, *rcdofs)
Create a multi-point constraint between nodes.

rNodeTadnteger tag identifying the retained, or master node.
(int)
cNodeTadnteger tag identifying the constrained, or slave node.
(int)
numDOF | number of dofs to be constrained
(int)
rcdofs| nodal degrees-of-freedom that are constrained at the cNode to be the same as those at the rNode
(list Valid range is from 1 through ndf, the number of nodal degrees-of-freedom.

(int)) rcdofs = [rdofl, cdofl, rdof2, cdof2, ...]

rigidDiaphragm command

rigidDiaphragm (perpDirn, rNodeTag, *cNodeTags)
Create a multi-point constraint between nodes. These objects will constraint certain degrees-of-freedom at
the listed slave nodes to move as if in a rigid plane with the master node. To enforce this constraint,
Transformation constraint is recommended.

perpDirn (int) direction perpendicular to the rigid plane (i.e. direction 3 corresponds to the 1-2
plane)

rNodeTag (int) integer tag identifying the master node

cNodeTags (list | integar tags identifying the slave nodes

(int))

rigidLink command

rigidLink (type, rNodelag, cNodeTag)
Create a multi-point constraint between nodes.

1.4. Model Commands 65

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

type (str) string-based argument for rigid-link type:

e 'bar': only the translational degree-of-
freedom will be constrained to be exactly the
same as those at the master node

* 'beam': both the translational and rotational
degrees of freedom are constrained.

rNodeTag (int) integer tag identifying the master node
cNodeTag (int) integar tag identifying the slave node

1.4.6 timeSeries commands

timeSeries (tsType, tsTag, *tsArgs)
This command is used to construct a TimeSeries object which represents the relationship between the time in

the domain, ¢, and the load factor applied to the loads, A, in the load pattern with which the TimeSeries object is
associated, i.e. A = F(t).

tsType (str) | time series type.
tsTag (int) time series tag.
tsArgs (list) | alist of time series arguments

The following contain information about available t sType:

Constant TimeSeries

timeSeries (’Constant’, tag, -factor’, factor=1.0)
This command is used to construct a TimeSeries object in which the load factor applied remains constant and is
independent of the time in the domain, i.e. A = f(¢) = C.

tag (int) unique tag among TimeSeries objects.
factor (float) | the load factor applied (optional)

Linear TimeSeries

timeSeries (’Linear’, tag, ’-factor’, factor=1.0)
This command is used to construct a TimeSeries object in which the load factor applied is linearly proportional
to the time in the domain, i.e.

A = f(t) = cFactor x t.

tag (int) unique tag among TimeSeries objects.
factor (float) | Linear factor. (optional)

Trigonometric TimeSeries

timeSeries (’Trig’, tag, tStart, tEnd, period, ’-factor’, factor=1.0, ’-shift’, shift=0.0, ’-zeroShift’, ze-
roShift=0.0)
This command is used to construct a TimeSeries object in which the load factor is some trigonemtric function

66 Chapter 1. Author

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

of the time in the domain

2.0m (t—tStart)
period

+9),

otherwise

¢ = shift —

tStart <=t <= tEnd

period . zeroShift
0 % arcsin(———

cFactor

cFactor x sin(
)\ = t) =
(o) {0,07
tag (int)

unique tag among TimeSeries objects.

tStart (float)

Starting time of non-zero load factor.

tEnd (float)

Ending time of non-zero load factor.

period (float)

Characteristic period of sine wave.

shift (float)

Phase shift in radians. (optional)

factor (float)

Load factor. (optional)

zeroShift (float)

Zero shift. (optional)

Triangular TimeSeries

timeSeries ('Triangle’, tag, tStart, tEnd, period,

roShift=0.0)

~factor’, factor=1.0, ’-shift’, shift=0.0, ’-zeroShift’, ze-

This command is used to construct a TimeSeries object in which the load factor is some triangular function of

the time in the domain.

slope * k x period + zeroShi ft, k < 0.25
M= F(t) = cFactor — slope x (k — 0.25) * period + zeroShift, k <0.75
B) —cFactor + slope * (k — 0.75) % period + zeroShift, k< 1.0
0.0, otherwise
I cFactor
slope = —————
P period/4
t — tStart t — tStart
jo Lo tStart (L0~ tStarty
period period
Shift
b = shift — 2eroShift
slope
tag (int) unique tag among TimeSeries objects.
tStart (float) Starting time of non-zero load factor.
tEnd (float) Ending time of non-zero load factor.

period (float)

Characteristic period of sine wave.

shift (float)

Phase shift in radians. (optional)

factor (float)

Load factor. (optional)

zeroShift (float)

Zero shift. (optional)

Rectangular TimeSeries

timeSeries ('Rectangular’, tag, tStart, tEnd, *-factor’, factor=1.0)
This command is used to construct a TimeSeries object in which the load factor is constant for a specified period

and O otherwise, i.e.

A= f(t)

_J cFactor,
~ 0.0,

tStart <=t <=tEnd
otherwise

1.4. Model Commands

67

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

tag (int) unique tag among TimeSeries objects.
tStart (float) | Starting time of non-zero load factor.
tEnd (float) Ending time of non-zero load factor.
factor (float) | Load factor. (optional)

Pulse TimeSeries

timeSeries (’Pulse’, tag, tStart, tEnd, period, *-width’, width=0.5, ’-shift’, shift=0.0, ’-factor’, factor=1.0,
"-zeroShift’, zeroShift=0.0)
This command is used to construct a TimeSeries object in which the load factor is some pulse function of the
time in the domain.

cFactor + zeroShift, k < width

A= f(t) zeroshift, k<1
0.0, otherwise
t+ shift —tStart t+ shift —tStart
k= - — floor(-)
period period
tag (int) unique tag among TimeSeries objects.
tStart (float) Starting time of non-zero load factor.
tEnd (float) Ending time of non-zero load factor.
period (float) Characteristic period of pulse.
width (float) Pulse width as a fraction of the period. (optinal)
shift (float) Phase shift in seconds. (optional)
factor (float) Load factor. (optional)
zeroShift (float) | Zero shift. (optional)

Path TimeSeries

timeSeries ('Path’, tag, ’-dt’, dt=0.0, ’-values’, values=[], ’-time’, time=[], ’-filepath’, filePath="",
~fileTime’, fileTime=", ’-factor’, factor=1.0, ’-startTime’, startTime=0.0, ’-useLast’, ’-
prependZero’)
The relationship between load factor and time is input by the user as a series of discrete points in the 2d space

(load factor, time). The input points can come from a file or from a list in the script. When the time specified
does not match any of the input points, linear interpolation is used between points. There are many ways to
specify the load path, for example, the load factors set with values or £ilePath, and the time set with dt,
time,or fileTime.

tag (int) unique tag among TimeSeries objects.

dt (float) Time interval between specified points. (optional)

values (list (float)) Load factor values in a (list). (optional)

time (list (float)) Time values in a (list). (optional)

filePath (str) File containing the load factors values. (optional)

fileTime (str) File containing the time values for corresponding load factors. (optional)
factor (float) A factor to multiply load factors by. (optional)

startTime (float) Provide a start time for provided load factors. (optional)

'—useLast ' (str) Use last value after the end of the series. (optional)

'-prependZero"' (str) | Prepend a zero value to the series of load factors. (optional)

* Linear interpolation between points.

68 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenSeesPy Documentation, Release 1.0.0b1

* If the specified time is beyond last point (AND WATCH FOR NUMERICAL ROUNDOFF), 0.0 is re-
turned. Specify '-useLast ' to use the last data point instead of 0.0.

» The transient integration methods in OpenSees assume zero initial conditions. So it is important that any
timeSeries that is being used in a transient analysis‘ starts from zero (first data point in the timeSeries =
0.0). To guarantee that this is the case the optional parameter ' -prependZero' can be specified to
prepend a zero value to the provided TimeSeries.

1.4.7 pattern commands

pattern (patternType, patternTag, *patternArgs)

The pattern command is used to construct a LoadPattern and add it to the Domain. Each LoadPattern in OpenSees has
a TimeSeries associated with it. In addition it may contain ElementLoads, NodalLoads and SinglePointConstraints.
Some of these SinglePoint constraints may be associated with GroundMotions.

patternType (str) | pattern type.
patternTag (int) pattern tag.
patternArgs (list) | alist of pattern arguments

The following contain information about available patternType:

Plain Pattern

pattern ('Plain’, patternTag, tsTag, '-fact’, factor)
This commnand allows the user to construct a LoadPattern object. Each plain load pattern is associated with
a TimeSeries object and can contain multiple NodalLoads, Elementall.oads and SP_Constraint objects. The
command to generate LoadPattern object contains in { } the commands to generate all the loads and the single-
point constraints in the pattern. To construct a load pattern and populate it, the following command is used:

patternTag (int) | unique tag among load patterns.
tsTag (int) the tag of the time series to be used in the load pattern
factor (float) constant factor. (optional)

Note: the commands below to generate all the loads and sp constraints will be included in last called pattern command.

load command

load (nodelag, *loadValues)
This command is used to construct a NodalLLoad object and add it to the enclosing LoadPattern.

nodeTag (int) tag of node to which load is applied.
loadValues (list (float)) | ndf reference load values.

Note: The load values are reference loads values. It is the time series that provides the load factor. The load factor
times the reference values is the load that is actually applied to the node.

1.4. Model Commands 69

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

eleLoad command

eleLoad (’-ele’, *elelags, -range’, eleTagl, eleTag2, ’-type’, '-beamUniform’, Wy, Wz=0.0, Wx=0.0, ’-
beamPoint’, Py, Pz=0.0, xL, Px=0.0, ’-beamThermal’, *tempPts)
The eleLoad command is used to construct an ElementallLoad object and add it to the enclosing LoadPattern.

eleTags | tag of PREVIOUSLY DEFINED element

(list (int))

eleTagl | element tag
(int)

eleTag?2 | element tag
(int)

Wx (float) mag of uniformily distributed ref load acting in direction along member length. (optional)

Wy (float) mag of uniformily distributed ref load acting in local y direction of element

Wz (float) mag of uniformily distributed ref load acting in local z direction of element. (optional and only
for 3D)

Px (float) mag of ref point load acting in direction along member length. (optional)

Py (float) mag of ref point load acting in local y direction of element

Pz (float) mag of ref point load acting in local z direction of element. (optional and only for 3D)

xL (float) location of point load relative to node I, prescribed as fraction of element length

tempPts | temperature points: temPts = [T1l, y1, T2, y2, ..., T9, y9] Each point
(list (T1, y1l) define a temperature and location. This command may accept 2,5 or 9 temper-
(float)) ature points.

Note:

1. The load values are reference loads values, it is the time sereries that provides the load factor. The load factor
times the reference values is the load that is actually applied to the node.

2. At the moment, eleLoads do not work with 3D beam-column elements if Corotational geometric transformation
is used.

sp command

sp (nodeTag, dof, *dofValues)
This command is used to construct a single-point constraint object and add it to the enclosing LoadPattern.

nodeTag (int) tag of node to which load is applied.
dof (int) the degree-of-freedom at the node to which constraint is applied (1 through ndf)
dofValues (list (float)) | ndf reference constraint values.

Note: The dofValue is a reference value, it is the time series that provides the load factor. The load factor times the
reference value is the constraint that is actually applied to the node.

70 Chapter 1. Author

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

UniformEXxcitation Pattern

pattern ('UniformExcitation’, patternlag, dir, ’-disp’, dispSeriesTag, ’-vel’, velSeriesTag, ’-accel’, ac-
celSeriesTag, ’-vel0’, velO, ’-fact’, factor)
The UniformExcitation pattern allows the user to apply a uniform excitation to a model acting in a certain
direction. The command is as follows:

patternTag (int) unique tag among load patterns

dir (int) direction in which ground motion acts

1. corresponds to translation along the global X
axis

2. corresponds to translation along the global Y
axis

3. corresponds to translation along the global Z
axis

4. corresponds to rotation about the global X axis

5. corresponds to rotation about the global Y axis

6. corresponds to rotation about the global Z axis

dispSeriesTag (int) tag of the TimeSeries series defining the displace-
ment history. (optional)

velSeriesTag (int) tag of the TimeSeries series defining the velocity his-
tory. (optional)

accelSeriesTag (int) tag of the TimeSeries series defining the acceleration
history. (optional)

vel0 (float) the initial velocity (optional, default=0.0)

factor (float) constant factor (optional, default=1.0)

Note:

1. The responses obtained from the nodes for this type of excitation are RELATIVE values, and not the absolute
values obtained from a multi-support case.

2. must set one of the disp, vel or accel time series

Multi-Support Excitation Pattern

pattern ('MultipleSupport’, patternTag)
The Multi-Support pattern allows similar or different prescribed ground motions to be input at various supports
in the structure. In OpenSees, the prescribed motion is applied using single-point constraints, the single-point
constraints taking their constraint value from user created ground motions.

Note:

1. The results for the responses at the nodes are the ABSOLUTE values, and not relative values as in the case of a
UniformExciatation.

2. The non-homogeneous single point constraints require an appropriate choice of constraint handler.

1.4. Model Commands 71

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

Plain Ground Motion

groundMotion (gmTag, 'Plain’, ’-disp’, dispSeriesTag, ’-vel’, velSeriesTag, ’-accel’, accelSeriesTag, '-int’,
tsint="Trapezoidal’, ’-fact’, factor=1.0)
This command is used to construct a plain GroundMotion object. Each GroundMotion object is associated
with a number of TimeSeries objects, which define the acceleration, velocity and displacement records for that
ground motion. T

gmTag (int) unique tag among ground motions in load pattern

dispSeriesTag (int) tag of the TimeSeries series defining the displacement history. (optional)
velSeriesTag (int) tag of the TimeSeries series defining the velocity history. (optional)
accelSeriesTag (int) | tag of the TimeSeries series defining the acceleration history. (optional)
tsInt (str) 'Trapezoidal’ or 'Simpson' numerical integration method
factor (float) constant factor. (optional)

Note:
1. The displacements are the ones used in the ImposedMotions to set nodal response.

2. If only the acceleration TimeSeries is provided, numerical integration will be used to determine the velocities
and displacements.

3. For earthquake excitations it is important that the user provide the displacement time history, as the one gener-
ated using the trapezoidal method will not provide good results.

4. Any combination of the acceleration, velocity and displacement time-series can be specified.

Interpolated Ground Motion

groundMotion (gmTag, ’'Interpolated’, *gmTags, ’-fact’, facts)
This command is used to construct an interpolated GroundMotion object, where the motion is determined by
combining several previously defined ground motions in the load pattern.

gmTag (int) unique tag among ground motions in load pattern
gmTags (list (int)) | the tags of existing ground motions in pattern to be used for interpolation
facts (list (float)) | the interpolation factors. (optional)

Imposed Motion

imposedMotion (nodelag, dof, gmTag)
This command is used to construct an ImposedMotionSP constraint which is used to enforce the response
of a dof at a node in the model. The response enforced at the node at any give time is obtained from the
GroundMotion object associated with the constraint.

nodeTag (int) | tag of node on which constraint is to be placed
dof (int) dof of enforced response. Valid range is from 1 through ndf at node.
gmTag (int) pre-defined GroundMotion object tag

72 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

1.4.8 mass command

mass (nodelag, *massValues)
This command is used to set the mass at a node

integer tag identifying node whose mass is set
ndf nodal mass values corresponding to each DOF

nodeTag (int)
massValues (list (float))

1.4.9 region command

region (reglag, ’-ele’, *eles, ’-eleOnly’, *eles, ’-eleRange’, startEle, endEle, ’-eleOnlyRange’, startEle, en-
dEle, ’-node’, *nodes, ’-nodeOnly’, *nodes, '-nodeRange’, startNode, endNode, -nodeOnlyRange’,

startNode, endNode, ’-rayleigh’, alphaM, betaK, betaKinit, betaKcomm)
The region command is used to label a group of nodes and elements. This command is also used to assign

rayleigh damping parameters to the nodes and elements in this region. The region is specified by either elements
or nodes, not both. If elements are defined, the region includes these elements and the all connected nodes, unless
the -eleOnly option is used in which case only elements are included. If nodes are specified, the region includes
these nodes and all elements of which all nodes are prescribed to be in the region, unless the -nodeOnly option
is used in which case only the nodes are included.

unique integer tag

tags of selected elements in domain to be included in region (optional)
tags of selected nodes in domain to be included in region (optional)
tag for start element (optional)

tag for end element (optional)

tag for start node (optional)

tag for end node (optional)

regTag (int)
eles (list (int))
nodes (list (int))
startEle (int)
endEle (int)
startNode (int)
endNode (int)

alphaM (float)

factor applied to elements or nodes mass matrix (optional)

betakK (float)

factor applied to elements current stiffness matrix (optional)

betaKinit (float)

factor applied to elements initial stiffness matrix (optional)

betaKcomm (float)

factor applied to elements committed stiffness matrix (optional)

Note: The user cannot prescribe the region by BOTH elements and nodes.

1.4.10 rayleigh command

rayleigh (alphaM, betaK, betaKinit, betaKcomm)
This command is used to assign damping to all previously-defined elements and nodes. When using rayleigh
damping in OpenSees, the damping matrix for an element or node, D is specified as a combination of stiffness
and mass-proportional damping matrices:

D= Qg o* M + ﬁK * Kcurr + 6Kinit * Kinit + ﬂKcomm * Kcomm.it

alphaM (float)
betakK (float)
betaKinit (float)
betaKcomm (float)

factor applied to elements or nodes mass matrix
factor applied to elements current stiffness matrix.
factor applied to elements initial stiffness matrix.
factor applied to elements committed stiffness matrix.

1.4. Model Commands 73

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

1.4.11 block commands

Create a block of mesh

block2D command

block2D (numX, numY, startNode, startEle, eleType, *eleArgs, *crds)
Create mesh of quadrilateral elements

numX number of elements in local x directions of the block.

(int)

numY | number of elements in local y directions of the block.
(int)

startNawele from which the mesh generation will start.

(int)

startEledement from which the mesh generation will start.
(int)

eleTypeelement type ('quad’', 'shell’, 'bbarQuad’', 'enhancedQuad', or 'SSPquad')
(str)

eleArgsa list of element parameters.

(list)

crds coordinates of the block elements with the format:
(list) [1, x1,y1, <z1>,
2,x2,y2,<z2>,

3, x3,y3, <z3>,

4, x4, y4, <z4>,

<5>, <x5>, <y5>, <z5>,
<6>, <x6>, <y6>, <76>,
<T>, <xT>, <y7>, <z7>,
<8>, <x8>, <y8>, <z8>,
<9>, <x9>, <y9>, <z9>]
<> means optional

block3D command

block3D (numX, numY, numZ, startNode, startEle, eleType, *eleArgs, *crds)
Create mesh of quadrilateral elements

74

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

OpenSeesPy Documentation, Release 1.0.0b1

numX number of elements in local x directions of the block.
(int)
numY number of elements in local y directions of the block.
(int)
numZ number of elements in local z directions of the block.
(int)
startidddérom which the mesh generation will start.
(int)
st artdidment from which the mesh generation will start.
(int)
eleTyatement type (' stdBrick', "bbarBrick', 'Brick20N")
(str)
eleAmgsst of element parameters.
(list)
crds coordinates of the block elements with the format:
(list)| [1, x1,y1, z1,

2,x2,y2,72,

3,x3,y3, z3,

4, x4, y4, z4,

5, x5, y5, 75,

6, x6, y6, 76,

7,x7,y7,27,

8, x8, y8, z8,

9,x9,y9, 29,

<10>, <x10>, <y10>, <z10>,

<11>, <x11>, <yl1>,<z11>,

<12>, <x12>, <y12>, <z12>,

<13>, <x13>, <y13>, <z13>,

<14>, <x14>, <yl14>, <z14>,

<15>, <x15>, <y15>, <z15>,

<16>, <x16>, <y16>, <z16>,

<17>, <x17>, <yl17>, <z17>,

<18>, <x18>, <y18>, <z18>,

<19>, <x19>, <y19>, <z19>,

<20>, <x20>, <y20>, <z20>,

21>, <x21>, <y21>, <z21>,

<22>, <x22>, <y22>, <722>,

<23>, <x23>, <y23>, <723>,

<24>, <x24>, <y24>, <z724>,

<25>, <x25>, <y25>, <z25>,

<26>, <x26>, <y26>, <z26>,

27>, <x27>, <y27>, <z27>]

<> means optional

1.4.12 beamintegration commands

beamIntegration (type, tag, *args)
A wide range of numerical integration options are available in OpenSees to represent distributed plasticity or
non-prismatic section details in Beam-Column Elements, i.e., across the entire element domain [0, L].

Following are beamlIntegration types available in the OpenSees:

Integration Methods for Distributed Plasticity. Distributed plasticity methods permit yielding at any integration point

1.4. Model Commands 75

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

OpenSeesPy Documentation, Release 1.0.0b1

along the element length.

Lobatto

beamIntegration (’Lobatto’, tag, secTag, N)

Create a Gauss-Lobatto beamIntegration object. Gauss-Lobatto integration is the most common approach for
evaluating the response of forceBeamColumn (Neuenhofer and Filippou 1997) because it places an integration
point at each end of the element, where bending moments are largest in the absence of interior element loads.

tag (int) tag of the beam integration.
secTag (int) | A previous-defined section object.
N (int) Number of integration points along the element.

Legendre

beamIntegration (’'Legendre’, tag, secTag, N)

Create a Gauss-Legendre beamIntegration object. Gauss-Legendre integration is more accurate than Gauss-
Lobatto; however, it is not common in force-based elements because there are no integration points at the
element ends.

Places N Gauss-Legendre integration points along the element. The location and weight of each integration point
are tabulated in references on numerical analysis. The force deformation response at each integration point is
defined by the section. The order of accuracy for Gauss-Legendre integration is 2N-1.

Arguments and examples see Lobatto.

NewtonCotes

beamIntegration (’'NewtonCotes’, tag, secTag, N)

Create a Newton-Cotes beamlIntegration object. Newton-Cotes places integration points uniformly along the
element, including a point at each end of the element.

Places N Newton-Cotes integration points along the element. The weights for the uniformly spaced integration
points are tabulated in references on numerical analysis. The force deformation response at each integration
point is defined by the section. The order of accuracy for Gauss-Radau integration is N-1.

Arguments and examples see Lobatto.

Radau

beamIntegration ('Radau’, tag, secTag, N)

Create a Gauss-Radau beamlIntegration object. Gauss-Radau integration is not common in force-based elements
because it places an integration point at only one end of the element; however, it forms the basis for optimal
plastic hinge integration methods.

Places N Gauss-Radau integration points along the element with a point constrained to be at ndl. The location
and weight of each integration point are tabulated in references on numerical analysis. The force-deformation
response at each integration point is defined by the section. The order of accuracy for Gauss-Radau integration
is 2N-2.

Arguments and examples see Lobatto.

76

Chapter 1. Author

https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(958)
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

Trapezoidal

beamIntegration ('Trapezoidal’, tag, seclag, N)
Create a Trapezoidal beamIntegration object.

Arguments and examples see Lobatto.

CompositeSimpson

beamIntegration ('CompositeSimpson’, tag, secTag, N)
Create a CompositeSimpson beamlIntegration object.

Arguments and examples see Lobatto.
UserDefined
beamIntegration ('UserDefined’, tag, N, *secTags, *locs, *wts)

Create a UserDefined beamlIntegration object. This option allows user-specified locations and weights of the
integration points.

tag (int) tag of the beam integration
N (int) number of integration points along the element.
secTags (list (int)) | A list previous-defined section objects.
locs (list (float)) Locations of integration points along the element.
wt s (list (float)) weights of integration points.

locs = [0.1, 0.3, 0.5, 0.7, 0.9]

wts = [0.2, 0.15, 0.3, 0.15, 0.2]

secs = [1, 2, 2, 2, 1]

beamIntegration ('UserDefined', 1, len(secs), xsecs, locs, *wts)

Places N integration points along the element, which are defined in 1ocs on the natural domain [0, 1]. The
weight of each integration point is defined in the wt s also on the [0, 1] domain. The force-deformation response
at each integration point is defined by the secs. The locs, wts, and secs should be of length N. In general,
there is no accuracy for this approach to numerical integration.

FixedLocation

beamIntegration ('FixedLocation’, tag, N, *secTags, *locs)
Create a FixedLocation beamlIntegration object. This option allows user-specified locations of the integration
points. The associated integration weights are computed by the method of undetermined coefficients (Vander-
monde system)

N

1
. . 1

g x] 1wi:/ 2 e = =, (j=1,..,N)
0 J

i=1

Note that NewtonCotes integration is recovered when the integration point locations are equally spaced.

tag (int) tag of the beam integration

N (int) number of integration points along the element.
secTags (list (int)) | A list previous-defined section objects.

locs (list (float)) Locations of integration points along the element.

1.4. Model Commands 77

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

Places N integration points along the element, whose locations are defined in Locs. on the natural domain [0,
1]. The force-deformation response at each integration point is defined by the secs. Both the 1ocs and secs
should be of length N. The order of accuracy for Fixed Location integration is N-1.

LowOrder

beamIntegration ('LowOrder’, tag, N, *secTags, *locs, *wts)
Create a LowOrder beamlIntegration object. This option is a generalization of the FixedLocation and UserDe-
Jined integration approaches and is useful for moving load analysis (Kidarsa, Scott and Higgins 2008). The
locations of the integration points are user defined, while a selected number of weights are specified and the
remaining weights are computed by the method of undetermined coefficients.

Ny N,

. 1)
-1 -1
> ol g = = Yol

i=1 i=1

Note that FixedLocation integration is recovered when Nc is zero.

tag (int) tag of the beam integration
N (int) number of integration points along the element.
secTags (list (int)) | A list previous-defined section objects.
locs (list (float)) Locations of integration points along the element.
wt s (list (float)) weights of integration points.

locs = [0.0, 0.2, 0.5, 0.8, 1.0]

wts [0.2, 0.2]

secs = [1, 2, 2, 2, 1]

beamIntegration ('LowOrder', 1, len(secs), *secs, xlocs, xwts)

Places N integration points along the element, which are defined in Locs. on the natural domain [0, 1]. The
force-deformation response at each integration point is defined by the secs. Both the 1ocs and secs should
be of length N. The wt s at user-selected integration points are specified on [0, 1], which can be of length Nc
equals O up to N. These specified weights are assigned to the first Nc entries in the 1ocs and secs, respectively.
The order of accuracy for Low Order integration is N-Nc-1.

Note: Nc is determined from the length of the wt s list. Accordingly, FixedLocation integration is recovered
when wt s is an empty list and UserDefined integration is recovered when the wt s and locs lists are of equal
length.

MidDistance

beamIntegration ('MidDistance’, tag, N, *secTags, *locs)
Create a MidDistance beamlntegration object. This option allows user-specified locations of the integration
points. The associated integration weights are determined from the midpoints between adjacent integration
point locations. w; = (241 — x;—1)/2fori =2..N — 1, w; = (z1 + 22)/2,andwy =1 — (zn_1 +2N)/2.

tag (int) tag of the beam integration

N (int) number of integration points along the element.
secTags (list (int)) | A list previous-defined section objects.

locs (list (float)) Locations of integration points along the element.

78 Chapter 1. Author

https://doi.org/10.1016/j.finel.2007.11.013
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

locs = [0.0, 0.2, 0.5, 0.8, 1.0]
secs = [1,2,2,2,1]
beamIntegration ('MidDistance',1,len(secs), xsecs, xlocs)

Places N integration points along the element, whose locations are defined in 1ocs on the natural domain [0,
1]. The force-deformation response at each integration point is defined by the secs. Both the 1ocs and secs
should be of length N. This integration rule can only integrate constant functions exactly since the sum of the
integration weights is one.

For the 1ocs shown above, the associated integration weights willbe [0.15, 0.2, 0.3, 0.2, 0.15].

Plastic Hinge Integration Methods. Plastic hinge integration methods confine material yielding to regions of the
element of specified length while the remainder of the element is linear elastic. A summary of plastic hinge integration
methods is found in (Scott and Fenves 2006).

UserHinge

beamIntegration ('UserHinge’, tag, secE, npL, *secsL, *locsL, *wtsL, npR, *secsR, *locsR, *wtsR)
Create a UserHinge beamIntegration object.

tag (int) tag of the beam integration

seckE (int) A previous-defined section objects for non-hinge area.

nplL (int) number of integration points along the left hinge.

secsL (list (int)) A list of previous-defined section objects for left hinge area.

locsL (list (float)) | A list of locations of integration points for left hinge area.

wt sL (list (float)) A list of weights of integration points for left hinge area.
npR (int) number of integration points along the right hinge.

secsR (list (int)) A list of previous-defined section objects for right hinge area.
locsR (list (float)) | A list of locations of integration points for right hinge area.
wt sR (list (float)) A list of weights of integration points for right hinge area.

tag = 1

secE = 5

nplL = 2

secsL = [1,2]
locsL = [0.1,0.2]
wtsL = [0.5,0.5]
npR = 2

secsR = [3,4]
locsR = [0.8,0.9]
wtsR = [0.5,0.5]
beamIntegration ('UserHinge', tag, secE, npL, xsecsL, xrlocsL, »wtsL, npR, secsR, r1locsR,
—*WtsR)

HingeMidpoint

beamIntegration ('HingeMidpoint’, tag, secl, Ipl, secl, IpJ, secE)
Create a HingeMidpoint beamIntegration object. Midpoint integration over each hinge region is the most accu-
rate one-point integration rule; however, it does not place integration points at the element ends and there is a
small integration error for linear curvature distributions along the element.

1.4. Model Commands 79

https://doi.org/10.1061/(ASCE)0733-9445(2006)132:2(244)
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

tag (int) tag of the beam integration.

seclI (int) | A previous-defined section object for hinge at I.

1pI (float) | The plastic hinge length at I.

secd (int) | A previous-defined section object for hinge at J.

1pJ (float) | The plastic hinge length at J.

secE (int) | A previous-defined section object for the element interior.

The plastic hinge length at end I (J) is equal to 1pI (1pJ) and the associated force deformation response is
defined by the secI (secJ). The force deformation response of the element interior is defined by the secE.
Typically, the interior section is linear-elastic, but this is not necessary.

lpI = 0.1
1lpd = 0.2
beamIntegration ('HingeMidpoint', secI, lpI, secd, lpd, secE)

HingeRadau

beamIntegration ('HingeRadau’, tag, secl, Ipl, secl, IpJ, secE)
Create a HingeRadau beamIntegration object. Two-point Gauss-Radau integration over each hinge region places
an integration point at the element ends and at 2/3 the hinge length inside the element. This approach represents
linear curvature distributions exactly; however, the characteristic length for softening plastic hinges is not equal
to the assumed palstic hinge length.

Arguments and examples see HingeMidpoint.

HingeRadauTwo

beamIntegration ('HingeRadauTwo’, tag, secl, Ipl, secJ, IpJ, secE)
Create a HingeRadauTwo beamlIntegration object. Modified two-point Gauss-Radau integration over each hinge
region places an integration point at the element ends and at 8/3 the hinge length inside the element. This ap-
proach represents linear curvature distributions exactly and the characteristic length for softening plastic hinges
is equal to the assumed plastic hinge length.

Arguments and examples see HingeMidpoint.

HingeEndpoint

beamhingeEndpoint (tag, secl, Ipl, secJ, IpJ, secE)
Create a HingeEndpoint beamIntegration object. Endpoint integration over each hinge region moves the inte-
gration points to the element ends; however, there is a large integration error for linear curvature distributions
along the element.

Arguments and examples see HingeMidpoint.

1.4.13 uniaxialMaterial commands

uniaxialMaterial (matType, matlag, *matArgs)
This command is used to construct a UniaxialMaterial object which represents uniaxial stress-strain (or force-
deformation) relationships.

80 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

For example,

matType (str) | material type
matTag (int) material tag.
matArgs (list) | alist of material arguments, must be preceded with *.

matType = 'SteelOl'

matTag = 1

matArgs = [Fy,

EO, b]

uniaxialMaterial (matType, matTag, xmatArgs)

The following contain information about available mat Type:

Steel01

uniaxialMaterial (’Steel0l’, matlag, Fy, EO, b, al, a2, a3, a4)
This command is used to construct a uniaxial bilinear steel material object with kinematic hardening and optional
isotropic hardening described by a non-linear evolution equation (REF: Fedeas).

matTag | integer tag identifying material

(int)

Fy yield strength

(float)

EO initial elastic tangent

(float)

b (float) | strain-hardening ratio (ratio between post-yield tangent and initial elastic tangent)

al isotropic hardening parameter, increase of compression yield envelope as proportion of yield
(float) strength after a plastic strain of as * (F,/Ey) (optional)

a2 isotropic hardening parameter (see explanation under al). (optional).

(float)

a3 isotropic hardening parameter, increase of tension yield envelope as proportion of yield strength
(float) after a plastic strain of a4 * (F,/Ep). (optional)

a4 isotropic hardening parameter (see explanation under a3). (optional)

(float)

Note: If strain-hardening ratio is zero and you do not expect softening of your system use BandSPD solver.

Steel02

uniaxialMaterial (’Steel02’, matTag, Fy, EO, b, *params, al=a2*Fy/E0, a2=1.0, a3=a4*Fy/E0, a4=1.0,

siglnit=0.0)

This command is used to construct a uniaxial Giuffre-Menegotto-Pinto steel material object with isotropic strain

hardening.

1.4. Model Commands 81

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

matTag (int)

integer tag identifying material

Fy (float) yield strength
EO (float) initial elastic tangent
b (float) strain-hardening ratio (ratio between post-yield tan-

gent and initial elastic tangent)

params (list (float))

parameters to control the transition from elastic
to plastic branches. params=[R0,cR1l,cR2].
Recommended values: RO=between 10 and 20,
cR1=0.925, cR2=0.15

al (float)

isotropic hardening parameter, increase of compres-
sion yield envelope as proportion of yield strength
after a plastic strain of as * (F,/Ey) (optional)

a2 (float)

isotropic hardening parameter (see explanation un-
der al). (optional).

a3 (float)

isotropic hardening parameter, increase of tension
yield envelope as proportion of yield strength after
a plastic strain of a4 * (F,/Ey). (optional)

a4 (float)

isotropic hardening parameter (see explanation un-
der a3). (optional)

sigInit (float)

Initial Stress Value (optional, default: 0.0) the strain
is calculated from epsP=sigInit/E

if (sigInit!= 0.0) {
double epsInit = sigInit/E;

eps = trialStrain+tepsInit;
} else {
eps = trialStrain;

}

See also:

Steel02

Steeld4

uniaxialMaterial (’Steel4’, matTag, Fy, EO, -asym’, ’-kin’, b_k, R_0, r_1,r_2, b_kc, R_Oc, r_Ic, r_2c,
-iso’, b_i, rho_i, b_l, R_i, l_yp, b_ic, rho_ic, b_lc, R_ic, ’-ult’, f_u, R_u, f_uc, R_uc,

-init’, sig_init, "-mem’, cycNum)

This command is used to construct a general uniaxial material with combined kinematic and isotropic hardening

and optional non-symmetric behavior.

82

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Steel02_Material_--_Giuffr%C3%A9-Menegotto-Pinto_Model_with_Isotropic_Strain_Hardening

OpenSeesPy Documentation, Release 1.0.0b1

matTag | integer tag identifying material
(int)
Fy yield strength
(float)
EO initial elastic tangent
(float)
'~kin' | apply kinematic hardening
(str)
b_k hardening ratio (E_k/E_0)
(float)
R_O, control the exponential transition from linear elastic to hardening asymptote recommended val-
r_1, ues: R_0 = 20, r_.1 = 0.90, r_2 = 0.15
r 2
(float)
'—iso' | apply isotropic hardening
(str)
b_i initial hardening ratio (E_i/E_0)
(float)
b_1 saturated hardening ratio (E_is/E_0)
(float)
rho_1 specifies the position of the intersection point between initial and saturated hardening asymptotes
(float)
R_1 control the exponential transition from initial to saturated asymptote
(float)
1_vyp length of the yield plateau in eps_y0 = f_y / E_O units
(float)
'—ult' | apply an ultimate strength limit
(str)
f u ultimate strength
(float)
R_u control the exponential transition from kinematic hardening to perfectly plastic asymptote
(float)
'—asym'| assume non-symmetric behavior
(str)
'—init'| apply initial stress
(str)
sig_iniftinitial stress value
(float)
'-mem' | configure the load history memory
(str)
cycNum | expected number of half-cycles during the loading process Efficiency of the material can be
(float) slightly increased by correctly setting this value. The default value is cycNum = 50 Load
history memory can be turned off by setting cycNum = 0.
See also:

Steeld

1.4. Model Commands 83

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Steel4_Material

OpenSeesPy Documentation, Release 1.0.0b1

Hysteretic

uniaxialMaterial (’Hysteretic’, matlag, *pl, *p2, *p3=p2, *nl, *n2, *n3=n2, pinchX, pinchY, damagel,
damage?, beta)
This command is used to construct a uniaxial bilinear hysteretic material object with pinching of force and

deformation, damage due to ductility and energy, and degraded unloading stiffness based on ductility.

matTag integer tag identifying material

(int)

pl (list | pl=[slp, elp], stress and strain (or force & deformation) at first point of the envelope

(float)) in the positive direction

p2 (list | p2=[s2p, e2pl, stress and strain (or force & deformation) at second point of the enve-

(float)) lope in the positive direction

r3 (list | p3=[s3p, e3p], stress and strain (or force & deformation) at third point of the envelope

(float)) in the positive direction

nl (list | n1=[sln, eln], stress and strain (or force & deformation) at first point of the envelope

(float)) in the negative direction

n2 (list | n2=[s2n, e2n], stress and strain (or force & deformation) at second point of the enve-

(float)) lope in the negative direction

n3 (list | n3=[s3n, e3n], stress and strain (or force & deformation) at third point of the envelope

(float)) in the negative direction

pinchx pinching factor for strain (or deformation) during reloading

(float)

pinchy pinching factor for stress (or force) during reloading

(float)

damagel damage due to ductility: D1(mu-1)

(float)

damage?2 damage due to energy: D2(Eii/Eult)

(float)

beta (float) | power used to determine the degraded unloading stiffness based on ductility, mu-beta (op-
tional, default=0.0)

See also:

Steel4

ReinforcingSteel

uniaxialMaterial (’ReinforcingSteel’, matTag, fy, fu, Es, Esh, esh, eult, '-GABuck’, Isr, beta, r,
gama, -DMBuck’, Isr, alpha=1.0, -CMFatigue’, Cf, alpha, Cd, *-IsoHard’, al=4.3,

limit=1.0, -MPCurveParams’, R1=0.333, R2=18.0, R3=4.0)
This command is used to construct a ReinforcingSteel uniaxial material object. This object is intended to be

used in a reinforced concrete fiber section as the steel reinforcing material.

84 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Hysteretic_Material

OpenSeesPy Documentation, Release 1.0.0b1

matTag integer tag identifying material
(int)
fy (float) Yield stress in tension
fu (float) Ultimate stress in tension
Es (float) Initial elastic tangent
Esh (float) Tangent at initial strain hardening
esh (float) Strain corresponding to initial strain hardening
eult (float) | Strain at peak stress
'-GABuck' | Buckling Model Based on Gomes and Appleton (1997)
(str)
1sr (float) Slenderness Ratio
beta (float) | Amplification factor for the buckled stress strain curve.
r (float) Buckling reduction factor
r can be a real number between [0.0 and 1.0]
r=1.0 full reduction (no buckling)
r=0.0 no reduction
0.0<r<1.0 linear interpolation between buckled and unbuckled curves
gamma Buckling constant
(float)
'-DMBuck ' | Buckling model based on Dhakal and Maekawa (2002)
(str)
1sr (float) Slenderness Ratio
alpha Adjustment Constant usually between 0.75 and 1.0 Default: alpha=1.0, this parameter is
(float) optional.
' —~CMFat iguge Coffin-Manson Fatigue and Strength Reduction
(str)
Cf (float) Coffin-Manson constant C
alpha Coffin-Manson constant a
(float)
Cd (float) Cyclic strength reduction constant
'-IsoHard;| Isotropic Hardening / Diminishing Yield Plateau
(str)
al (float) Hardening constant (default = 4.3)
limit Limit for the reduction of the yield plateau. % of original plateau length to remain (0.01 <
(float) limit < 1.0) Limit =1.0, then no reduction takes place (default =0.01)
' -MPCurvePg Manegotto and Pinto Curve Parameters
(str)
R1 (float) (default = 0.333)
R2 (float) (default = 18)
R3 (float) (default = 4)

See also:

Dodd_Restrepo

uniaxialMaterial ('Dodd_Restrepo’, matTag, Fy, Fsu, ESH, ESU, Youngs, ESHI, FSHI, OmegaFac=1.0)

This command is used to construct a Dodd-Restrepo steel material

1.4. Model Comma

nds 85

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Reinforcing_Steel_Material

OpenSeesPy Documentation, Release 1.0.0b1

matTag | integer tag identifying material
(int)
Fy (float) | Yield strength
Fsu Ultimate tensile strength (UTS)
(float)
ESH Tensile strain at initiation of strain hardening
(float)
ESU Tensile strain at the UTS
(float)
Youngs | Modulus of elasticity
(float)
ESHI Tensile strain for a point on strain hardening curve, recommended range of values for ESHI: [
(float) (ESU + 5*ESH)/6, (ESU + 3*ESH)/4]
FSHI Tensile stress at point on strain hardening curve corresponding to ESHI
(float)
OmegaFa¢ Roundedness factor for Bauschinger curve in cycle reversals from the strain hardening curve.
(float) Range: [0.75, 1.15]. Largest value tends to near a bilinear Bauschinger curve. Default = 1.0.
See also:
Notes
RambergOsgoodSteel

uniaxialMaterial ('RambergOsgoodSteel’, matlag, fy, EO, a, n)
This command is used to construct a Ramberg—Osgood steel material object.

mat Tag integer tag identifying material

(int)

fy Yield strength

(float)

EO initial elastic tangent

(float)

a “yield offset” and the Commonly used value for a is 0.002

(float)

n Parameters to control the transition from elastic to plastic branches. And controls the hardening of

(float) | the material by increasing the “n” hardening ratio will be decreased. Commonly used values for n
are ~5 or greater.

See also:

Notes

SteelMPF

uniaxialMaterial (’SteelMPF’, matTag, fyp, fyn, EO, bp, bn, RO, cRI, cR2, al=0.0, a2=1.0, a3=0.0,

a4=1.0)
This command is used to construct a uniaxialMaterial SteeIMPF (Kolozvari et al., 2015), which represents the

well-known uniaxial constitutive nonlinear hysteretic material model for steel proposed by Menegotto and Pinto
(1973), and extended by Filippou et al. (1983) to include isotropic strain hardening effects.

86 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/DoddRestrepo
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/RambergOsgoodSteel_Material

OpenSeesPy Documentation, Release 1.0.0b1

matTag integer tag identifying material
(int)
fyp Yield strength in tension (positive loading direction)
(float)
fyn Yield strength in compression (negative loading direction)
(float)
EO Initial tangent modulus
(float)
bp Strain hardening ratio in tension (positive loading direction)
(float)
bn Strain hardening ratio in compression (negative loading direction)
(float)
RO Initial value of the curvature parameter R (RO = 20 recommended)
(float)
cR1 Curvature degradation parameter (al = 0.925 recommended)
(float)
cR2 Curvature degradation parameter (a2 = 0.15 or 0.0015 recommended)
(float)
al Isotropic hardening in compression parameter (optional, default = 0.0). Shifts compression yield
(float) | envelope by a proportion of compressive yield strength after a maximum plastic tensile strain of
a2(fyp/E0)
a2 Isotropic hardening in compression parameter (optional, default = 1.0).
(float)
a3 Isotropic hardening in tension parameter (optional, default = 0.0). Shifts tension yield envelope by
(float) | aproportion of tensile yield strength after a maximum plastic compressive strain of a3(fyn/E0).
ad Isotropic hardening in tension parameter (optional, default = 1.0). See explanation of a3.
(float)
See also:
Notes
Concrete01

uniaxialMaterial (’Concrete0l’, matlag, fpc, epscO, fpcu, epsU)
This command is used to construct a uniaxial Kent-Scott-Park concrete material object with degraded linear
unloading/reloading stiffness according to the work of Karsan-Jirsa and no tensile strength. (REF: Fedeas).

matTag (int) | integer tag identifying material

fpc (float) concrete compressive strength at 28 days (compression is negative)
epscO (float) | concrete strain at maximum strength

fpcu (float) concrete crushing strength

epsU (float) concrete strain at crushing strength

Note:

1. Compressive concrete parameters should be input as negative values (if input as positive, they will be converted
to negative internally).

2. The initial slope for this model is (2*fpc/epscO)

1.4. Model Commands 87

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/SteelMPF_-_Menegotto_and_Pinto_(1973)_Model_Extended_by_Filippou_et_al._(1983)
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

See also:

Notes
Concrete02
uniaxialMaterial (’Concrete02’, matTag, fpc, epscO, fpcu, epsU, lambda, ft, Ets)

This command is used to construct a uniaxial Kent-Scott-Park concrete material object with degraded linear
unloading/reloading stiffness according to the work of Karsan-Jirsa and no tensile strength. (REF: Fedeas).

matTag (int) integer tag identifying material

fpc (float) concrete compressive strength at 28 days (compression is negative)

epscO (float) concrete strain at maximum strength

fpcu (float) concrete crushing strength

epsU (float) concrete strain at crushing strength

lambda (float) | ratio between unloading slope at $epscu and initial slope

£t (float) tensile strength

Ets (float) tension softening stiffness (absolute value) (slope of the linear tension softening branch)

Note:

1. Compressive concrete parameters should be input as negative values (if input as positive, they will be converted
to negative internally).

2. The initial slope for this model is (2*fpc/epsc0)

See also:

Notes
Concrete04
uniaxialMaterial (’Concrete04’, matlag, fc, ec, ecu, Ec, fct, et, beta)

This command is used to construct a uniaxial Popovics concrete material object with degraded linear unload-
ing/reloading stiffness according to the work of Karsan-Jirsa and tensile strength with exponential decay.

matTag integer tag identifying material

(int)

fc (float) floating point values defining concrete compressive strength at 28 days (compression is nega-
tive)

ec (float) floating point values defining concrete strain at maximum strength

ecu (float) | floating point values defining concrete strain at crushing strength

Ec (float) floating point values defining initial stiffness

fct (float) | floating point value defining the maximum tensile strength of concrete (optional)

et (float) floating point value defining ultimate tensile strain of concrete (optional)

beta loating point value defining the exponential curve parameter to define the residual stress (as a

(float) factor of ft) at etu

Note:

1. Compressive concrete parameters should be input as negative values.

88 Chapter 1. Author

http://opensees.berkeley.edu/wiki/index.php/Concrete01_Material_--_Zero_Tensile_Strength
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Concrete02_Material_--_Linear_Tension_Softening
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

2.

The envelope of the compressive stress-strain response is defined using the model proposed by Popovics (1973).
If the user defines Ec = 57000 sqrt(|fec|) (in psi)’ then the envelope curve is identical to proposed by Mander
et al. (1988).

Model Characteristic: For loading in compression, the envelope to the stress-strain curve follows the model
proposed by Popovics (1973) until the concrete crushing strength is achieved and also for strains beyond that
corresponding to the crushing strength. For unloading and reloading in compression, the Karsan-Jirsa model
(1969) is used to determine the slope of the curve. For tensile loading, an exponential curve is used to define the
envelope to the stress-strain curve. For unloading and reloading in tensile, the secant stiffness is used to define
the path.

See also:

Notes

Concrete06

uniaxialMaterial (’Concrete06’, matTag, fc, €0, n, k, alphal, fcr, ecr, b, alpha2)

This command is used to construct a uniaxial concrete material object with tensile strength, nonlinear tension
stiffening and compressive behavior based on Thorenfeldt curve.

matTag (int) integer tag identifying material

fc (float) concrete compressive strength (compression is negative)
e0 (float) strain at compressive strength

n (float) compressive shape factor

k (float) post-peak compressive shape factor

alphal (float) | a; parameter for compressive plastic strain definition
fcr (float) tensile strength

ecr (float) tensile strain at peak stress (fcr)

b (float) exponent of the tension stiffening curve

alpha2 (float) | aq parameter for tensile plastic strain definition

Note:
1.

Compressive concrete parameters should be input as negative values.

See also:

Notes

Concrete07

uniaxialMaterial (’Concrete07’, matlag, fc, ec, Ec, ft, et, xp, xn, r)

Concrete07 is an implementation of Chang & Mander’s 1994 concrete model with simplified unloading and
reloading curves. Additionally the tension envelope shift with respect to the origin proposed by Chang and
Mander has been removed. The model requires eight input parameters to define the monotonic envelope of
confined and unconfined concrete in the following form:

1.4. Model Commands 89

http://opensees.berkeley.edu/wiki/index.php/Concrete04_Material_--_Popovics_Concrete_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Concrete06_Material

OpenSeesPy Documentation, Release 1.0.0b1

matTag integer tag identifying material
(int)
fc (float) concrete compressive strength (compression is negative)
ec (float) concrete strain at maximum compressive strength
Ec (float) Initial Elastic modulus of the concrete
ft (float) tensile strength of concrete (tension is positive)
et (float) tensile strain at max tensile strength of concrete
xp (float) Non-dimensional term that defines the strain at which the straight line descent begins in
tension
xn (float) Non-dimensional term that defines the strain at which the straight line descent begins in
compression
r (float) Parameter that controls the nonlinear descending branch
See also:
Notes
Concrete01WithSITC

uniaxialMaterial (’Concrete01WithSITC’, matlag, fpc, epscO, fpcu, epsU, endStrainSITC=0.01)
This command is used to construct a modified uniaxial Kent-Scott-Park concrete material object with degraded
linear unloading/reloading stiffness according to the work of Karsan-Jirsa and no tensile strength. The modifi-
cation is to model the effect of Stuff In The Cracks (SITC).

matTag (int) integer tag identifying material

fpc (float) concrete compressive strength at 28 days (compression is negative)
epscO (float) concrete strain at maximum strength

fpcu (float) concrete crushing strength

epsU (float) concrete strain at crushing strength

endStrainSITC (float) | optional, default = 0.03

Note:

1. Compressive concrete parameters should be input as negative values (if input as positive, they will be converted
to negative internally).

2. The initial slope for this model is (2*fpc/epsc0)

See also:

Notes

ConfinedConcrete01

uniaxialMaterial (’ConfinedConcreteO1’, matlag, secType, fpc, Ec, -epscu’, epscu, -gamma’, gamma,
-nu’, nu, "-varub’, ’-varnoub’, L1, L2, L3, phis, S, fyh, EsO, haRatio, mu, phiLon, ’-
internal’, *intArgs, -wrap’, *wrapArgs, ’-gravel’, ’-silica’, ’-tol’, tol, ’-maxNumlter’,
maxNumlter, ’-epscuLimit’, epscuLimit, ’-stRatio’, stRatio)

90 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Concrete07_%E2%80%93_Chang_%26_Mander%E2%80%99s_1994_Concrete_Model
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Concrete01_Material_With_Stuff_in_the_Cracks

OpenSeesPy Documentation, Release 1.0.0b1

matTag (int) integer tag identifying material

secType (str) tag for the transverse reinforcement configuration.
see image below.

e 'S1"' square section with S1 type of trans-
verse reinforcement with or without external
FRP wrapping

e 'S2"' square section with S2 type of trans-
verse reinforcement with or without external
FRP wrapping

e 'S3"' square section with S3 type of trans-
verse reinforcement with or without external
FRP wrapping

e 'S4a' square section with S4a type of trans-
verse reinforcement with or without external
FRP wrapping

e 'S4b' square section with S4b type of trans-
verse reinforcement with or without external
FRP wrapping

e 'S5"' square section with S5 type of trans-
verse reinforcement with or without external
FRP wrapping

e 'C"' circular section with or without external
FRP wrapping

e 'R' rectangular section with or without exter-
nal FRP wrapping.

fpc (float) unconfined cylindrical strength of concrete speci-
men.

Ec (float) initial elastic modulus of unconfined concrete.

epscu (float) confined concrete ultimate strain. (optional)

gamma (float) the ratio of the strength corresponding to ultimate
strain to the peak strength of the confined concrete
stress-strain curve. If gamma cannot be achieved in
the range [0, epscuLimit] then epscuLimit (optional,
default: 0.05) will be assumed as ultimate strain.

nu (float) Poisson’s Ratio.

'—varub' (float) Poisson’s ratio is defined as a function of axial strain
by means of the expression proposed by Braga et al.
(2006) with the upper bound equal to 0.5

'—varnoub' (float) Poisson’s ratio is defined as a function of axial strain
by means of the expression proposed by Braga et al.
(2006) without any upper bound.

L1 (float) length/diameter of square/circular core section mea-
sured respect to the hoop center line.
L2 (float) additional dimensions when multiple hoops are be-
ing used.
L3 (float) additional dimensions when multiple hoops are be-
ing used.
phis (float) hoop diameter. If section arrangement has multiple
hoops it refers to the external hoop.
S (float) hoop spacing.
fyh (float) yielding strength of the hoop steel.
EsO (float) elastic modulus of the hoop steel.
haRatio (float) hardening ratio of the hoop steel.
1.4 my ({Toat) ductility factor of the hoop steel. ax
o Mgéﬁ%gﬁ%‘{ﬁ?ds diameter of longitudinal bars. b
intArgs (list (float)) intArgs= [phisi, Si, fyhi, EsO0i,

haRatioi, mui] optional parameters for defin-
ine the internal transverse reinforcement. If thev

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

° S1 . . S2 — > 9_’ S3)
«e.____e 9 . ® | Y l' \ o

See also:
Notes
ConcreteD

uniaxialMaterial (’ConcreteD’, matlag, fc, epsc, ft, epst, Ec, alphac, alphat, cesp=0.25, etap=1.15)
This command is used to construct a concrete material based on the Chinese design code.

matTag (int) integer tag identifying material

fc (float) concrete compressive strength

epsc (float) concrete strain at corresponding to compressive strength
ft (float) concrete tensile strength

epst (float) concrete strain at corresponding to tensile strength

Ec (float) concrete initial Elastic modulus

alphac (float) | compressive descending parameter

alphat (float) | tensile descending parameter

cesp (float) plastic parameter, recommended values: 0.2~0.3
etap (float) plastic parameter, recommended values: 1.0~1.3

Note:
1. Concrete compressive strength and the corresponding strain should be input as negative values.

2. The value fc/epsc and £t /epst should be smaller than Ec.

See also:

92 Chapter 1. Author

http://opensees.berkeley.edu/wiki/index.php/ConfinedConcrete01_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

Notes

FRPConfinedConcrete

uniaxialMaterial ('FRPConfinedConcrete’, matlag, fpcl, fpc2, epsc0, D, c, Ej, Sj, 4, eju, S, fyh, dlong,

dtrans, Es, vo, k)

This command is used to construct a uniaxial Megalooikonomou-Monti-Santini concrete material object with
degraded linear unloading/reloading stiffness according to the work of Karsan-Jirsa and no tensile strength.

matTag (int)

integer tag identifying material

fpcl (float)

concrete core compressive strength.

fpc2 (float)

concrete cover compressive strength.

epscO (float)

strain corresponding to unconfined concrete strength.

D (float) diameter of the circular section.

c (float) dimension of concrete cover (until the outer edge of steel stirrups)
EJj (float) elastic modulus of the fiber reinforced polymer (FRP) jacket.

Sj (float) clear spacing of the FRP strips - zero if FRP jacket is continuous.
t j (float) total thickness of the FRP jacket.

eju (float) rupture strain of the FRP jacket from tensile coupons.

S (float) spacing of the steel spiral/stirrups.

fyh (float)

yielding strength of the steel spiral/stirrups.

dlong (float)

diameter of the longitudinal bars of the circular section.

dtrans (float)

diameter of the steel spiral/stirrups.

Es (float) elastic modulus of steel.
vo (float) initial Poisson’s coefficient for concrete.
k (float) reduction factor for the rupture strain of the FRP jacket, recommended values 0.5-0.8.

Note:

1. IMPORTANT: The units of the input parameters should be in MPa, N, mm.

2. Concrete compressive strengths and the corresponding strain should be input as positive values.

3. When rupture of FRP jacket occurs due to dilation of concrete (lateral concrete strain exceeding reduced rupture
strain of FRP jacket), the analysis is not terminated. Only a message ‘“FRP Rupture” is plotted on the screen.

See also:

Notes

ConcreteCM

uniaxialMaterial (’ConcreteCM’, matTag, fpcc, epcc, Ec, rc, xcrn, ft, et, rt, xcrp, -GapClose’, gap=0)
This command is used to construct a uniaxialMaterial ConcreteCM (Kolozvari et al., 2015), which is a uniaxial
hysteretic constitutive model for concrete developed by Chang and Mander (1994).

1.4. Model Commands

93

http://opensees.berkeley.edu/wiki/index.php/ConcreteD
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/FRPConfinedConcrete

OpenSeesPy Documentation, Release 1.0.0b1

matTag integer tag identifying material
(int)
fpcc Compressive strength (f/)
(float)
epcc | Strain at compressive strength (e/,)
(float)
Ec Initial tangent modulus (E..)
(float)
rc Shape parameter in Tsai’s equation defined for compression (r.)
(float)
xcrn | Non-dimensional critical strain on compression envelope (e_,., where the envelope curve starts
(float) | following a straight line)
ft Tensile strength (f;)
(float)
et Strain at tensile strength (e;)
(float)
rt Shape parameter in Tsai’s equation defined for tension (r;)
(float)
xcrp | Non-dimensional critical strain on tension envelope (€.}, where the envelope curve starts following
(float) | astraight line — large value [e.g., 10000] recommended when tension stiffening is considered)
gap gap = 0, less gradual gap closure (default); gap = 1, more gradual gap closure
(float)
See also:

Notes

Elastic Uniaxial Material

uniaxialMaterial (’Elastic’, matTlag, E, eta=0.0, Eneg=E)
This command is used to construct an elastic uniaxial material object.

See also:

Notes

matTag (int) | integer tag identifying material

E (float) tangent

eta (float) damping tangent (optional, default=0.0)
Eneg (float) tangent in compression (optional, default=E)

Elastic-Perfectly Plastic Material

uniaxialMaterial (’ElasticPP’, matTag, E, epsyP, epsyN=epsyP, eps0=0.0)
This command is used to construct an elastic perfectly-plastic uniaxial material object.

94

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/ConcreteCM_-_Complete_Concrete_Model_by_Chang_and_Mander_(1994)
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Elastic_Uniaxial_Material

OpenSeesPy Documentation, Release 1.0.0b1

matTag integer tag identifying material
(int)
E (float) tangent
epsyP strain or deformation at which material reaches plastic state in tension
(float)
epsyN strain or deformation at which material reaches plastic state in compression. (optional, default
(float) is tension value)
eps0 initial strain (optional, default: zero)
(float)
See also:

Notes

Elastic-Perfectly Plastic Gap Material

uniaxialMaterial (’ElasticPPGap’, matTag, E, Fy, gap, eta=0.0, damage="noDamage’)
This command is used to construct an elastic perfectly-plastic gap uniaxial material object.

mat T4ainteger tag identifying material

(int)

E tangent

(float)

Fy stress or force at which material reaches plastic state
(float)

(float)

gap | initial gap (strain or deformation)

(float)

eta | hardening ratio (=Eh/E), which can be negative

damagean optional string to specify whether to accumulate damage or not in the material. With the default
(str) string, 'noDamage ' the gap material will re-center on load reversal. If the string 'damage' is
provided this recentering will not occur and gap will grow.

See also:

Notes

Elastic-No Tension Material

uniaxialMaterial (’ENT’, matlag, E)
This command is used to construct a uniaxial elastic-no tension material object.

See also:

Notes

matTag (int) | integer tag identifying material
E (float) tangent

1.4. Model Commands 95

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Elastic-Perfectly_Plastic_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
http://opensees.berkeley.edu/wiki/index.php/Elastic-Perfectly_Plastic_Gap_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Elastic-No_Tension_Material

OpenSeesPy Documentation, Release 1.0.0b1

Parallel Material

uniaxialMaterial (’Parallel’, matTag, *tags, -factor’, *facts)
This command is used to construct a parallel material object made up of an arbitrary number of previously-
constructed UniaxialMaterial objects.

matTag integer tag identifying material
(int)
tags (list | identification tags of materials making up the material model
(int))
facts (list | factors to create a linear combination of the specified materials. Factors can be negative to
(float)) subtract one material from an other. (optional, default = 1.0)
See also:

Notes

Series Material

uniaxialMaterial (’Series’, matlag, *tags)
This command is used to construct a series material object made up of an arbitrary number of previously-
constructed UniaxialMaterial objects.

matTag (int) integer tag identifying material
tags (list (int)) | identification tags of materials making up the material model

See also:
Notes
PySimple1 Material

uniaxialMaterial ('PySimplel’, matTag)
This command is used to construct a PySimplel uniaxial material object.

matTag integer tag identifying material
(int)
soilTyw®ilType = 1 Backbone of p-y curve approximates Matlock (1970) soft clay relation.

(int) soilType = 2 Backbone of p-y curve approximates API (1993) sand relation.

pult | Ultimate capacity of the p-y material. Note that “p” or “pult” are distributed loads [force per length
(float) | of pile] in common design equations, but are both loads for this uniaxialMaterial [i.e., distributed

load times the tributary length of the pile].

Y50 Displacement at which 50% of pult is mobilized in monotonic loading.
(float)
cd Variable that sets the drag resistance within a fully-mobilized gap as Cd*pult.
(float)
c The viscous damping term (dashpot) on the far-field (elastic) component of the displacement rate
(float) | (velocity). (optional Default = 0.0). Nonzero c values are used to represent radiation damping
effects
See also:

Notes

96 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Parallel_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
http://opensees.berkeley.edu/wiki/index.php/Series_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/PySimple1_Material

OpenSeesPy Documentation, Release 1.0.0b1

TzSimple1 Material

uniaxialMaterial ('TzSimplel’, matTag, tzType, tult, 50, c=0.0)
This command is used to construct a TzSimple1l uniaxial material object.

matTag integer tag identifying material

(int)

soilType| soilType = 1 Backbone of t-z curve approximates Reese and O’Neill (1987).

(int) soilType = 2 Backbone of t-z curve approximates Mosher (1984) relation.

tult Ultimate capacity of the t-z material. SEE NOTE 1.

(float)

z50 Displacement at which 50% of tult is mobilized in monotonic loading.

(float)

c (float) The viscous damping term (dashpot) on the far-field (elastic) component of the displacement
rate (velocity). (optional Default = 0.0). See NOTE 2.

Note:

1. The argument tult is the ultimate capacity of the t-z material. Note that “t” or “tult” are shear stresses [force per
unit area of pile surface] in common design equations, but are both loads for this uniaxialMaterial [i.e., shear
stress times the tributary area of the pile].

2. Nonzero c values are used to represent radiation damping effects

See also:
Notes
QzSimple1 Material

uniaxialMaterial (’QzSimplel’, matlag, qzType, quit, Z50, suction=0.0, cd=0.0)
This command is used to construct a QzSimplel uniaxial material object.

matTag| integer tag identifying material

(int)
qzType| qzType = 1 Backbone of g-z curve approximates Reese and O’Neill’s (1987) relation for drilled
(int) shafts in clay.

qzType = 2 Backbone of -z curve approximates Vijayvergiya’s (1977) relation for piles in sand.
qult Ultimate capacity of the q-z material. SEE NOTE 1.

(float)

z50 Displacement at which 50% of qult is mobilized in monotonic loading. SEE NOTE 2.

(float)

suction Uplift resistance is equal to suction*qult. Default = 0.0. The value of suction must be 0.0 to 0.1.*
(float)

c (float) | The viscous damping term (dashpot) on the far-field (elastic) component of the displacement rate
(velocity). Default = 0.0. Nonzero c values are used to represent radiation damping effects.*

Note:

1. qult: Ultimate capacity of the g-z material. Note that g1 or qult are stresses [force per unit area of pile tip]
in common design equations, but are both loads for this uniaxialMaterial [i.e., stress times tip area].

1.4. Model Commands 97

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/TzSimple1_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

2. Y50: Displacement at which 50% of pult is mobilized in monotonic loading. Note that Vijayvergiya’s relation
(qzType=2) refers to a “critical” displacement (zcrit) at which qult is fully mobilized, and that the corresponding
250 would be 0. 125zcrit.

3. optional args suction and ¢ must either both be omitted or both provided.

See also:

Notes

PyLig1 Material

uniaxialMaterial ('PyLiql’, matlag, soilType, pult, Y50, Cd, c, pRes, elel, ele2)

uniaxialMaterial ('PyLiql’, matTag, soilType, pult, Y50, Cd, c, pRes, ’-timeSeries’, tag)

This command constructs a uniaxial p-y material that incorporates liquefaction effects. This p y material is
used with a zeroLength element to connect a pile (beam-column element) to a 2 D plane-strain FE mesh or
displacement boundary condition. The p-y material obtains the average mean effective stress (which decreases
with increasing excess pore pressure) either from two specified soil elements, or from a time series. Currently,
the implementation requires that the specified soil elements consist of FluidSolidPorousMaterials in FourNode-
Quad elements, or PressureDependMultiYield or PressureDependMulti Yield02 materials in FourNodeQuadUP
or NineFourQuadUP elements. There are two possible forms:

matTag| integer tag identifying material

(int)

soilTypesoilType = 1 Backbone of p-y curve approximates Matlock (1970) soft clay relation. soilType =

(int) 2 Backbone of p-y curve approximates API (1993) sand relation.

pult Ultimate capacity of the p-y material. Note that “p” or “pult” are distributed loads [force per

(float) length of pile] in common design equations, but are both loads for this uniaxialMaterial [i.e.,
distributed load times the tributary length of the pile].

Y50 Displacement at which 50% of pult is mobilized in monotonic loading.

(float)

cd Variable that sets the drag resistance within a fully-mobilized gap as Cd*pult.

(float)

c (float) | The viscous damping term (dashpot) on the far-field (elastic) component of the displacement rate
(velocity). (optional Default = 0.0). Nonzero c values are used to represent radiation damping

effects
PRes sets the minimum (or residual) peak resistance that the material retains as the adjacent solid soil
(float) elements liquefy
elel are the eleTag (element numbers) for the two solid elements from which PyLiql will obtain mean
ele2 effective stresses and excess pore pressures
(float)
seriesTaAlternatively, mean effective stress can be supplied by a time series by specifying the text string
(float) '-timeSeries' and the tag of the series seriesTag.
See also:

Notes

TzLig1 Material

uniaxialMaterial ('TzLigl’, matTag, tzType, tult, 250, c, elel, ele2)

98 Chapter 1. Author

http://opensees.berkeley.edu/wiki/index.php/QzSimple1_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/PyLiq1_Material

OpenSeesPy Documentation, Release 1.0.0b1

uniaxialMaterial ('TzLigl’, matTag, tzType, tult, z50, c, '-timeSeries’, seriesTag)
The command constructs a uniaxial t-z material that incorporates liquefaction effects. This t z material is used
with a zeroLength element to connect a pile (beam-column element) to a 2 D plane-strain FE mesh. The t-z
material obtains the average mean effective stress (which decreases with increasing excess pore pressure) from
two specified soil elements. Currently, the implementation requires that the specified soil elements consist of

FluidSolidPorousMaterials in FourNodeQuad elements.

matTag integer tag identifying material

(int)

soilType | soilType = 1 Backbone of t-z curve approximates Reese and O’Neill (1987). soilType = 2

(int) Backbone of t-z curve approximates Mosher (1984) relation.

tult Ultimate capacity of the t-z material. SEE NOTE 1.

(float)

250 (float) | Displacement at which 50% of tult is mobilized in monotonic loading.

c (float) The viscous damping term (dashpot) on the far-field (elastic) component of the displacement
rate (velocity).

elel are the eleTag (element numbers) for the two solid elements from which PyLiql will obtain

ele2 mean effective stresses and excess pore pressures

(float)

seriesTag| Alternatively, mean effective stress can be supplied by a time series by specifying the text

(float) string ' -timeSeries' and the tag of the seriesm seriesTag.

Note:

1. The argument tult is the ultimate capacity of the t-z material. Note that “t” or “tult” are shear stresses [force
per unit area of pile surface] in common design equations, but are both loads for this uniaxialMaterial [i.e., shear
stress times the tributary area of the pile].

2. Nonzero c values are used to represent radiation damping effects

3. To model the effects of liquefaction with TzLiqgl, it is necessary to use the material stage updating command:

See also:

Notes
Hardening Material
uniaxialMaterial (’Hardening’, matlag, E, sigmaY, H_iso, H_kin, eta=0.0)

This command is used to construct a uniaxial material object with combined linear kinematic and isotropic
hardening. The model includes optional visco-plasticity using a Perzyna formulation.

matTag (int)
E (float)
sigmaY (float)
H_iso (float)
H_kin (float)
eta (float)

integer tag identifying material

tangent stiffness

yield stress or force

isotropic hardening Modulus

kinematic hardening Modulus

visco-plastic coefficient (optional, default=0.0)

See also:

Notes

1.4. Model Commands 99

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/TzLiq1_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Hardening_Material

OpenSeesPy Documentation, Release 1.0.0b1

CastFuse Material

uniaxialMaterial (’Cast’, matlag, n, bo, h, fy, E, L, b, Ro, cRIl, cR2, al=s2*Pp/Kp, a2=1.0,
a3=a4*Pp/Kp, a4=1.0)
This command is used to construct a parallel material object made up of an arbitrary number of previously-
constructed UniaxialMaterial objects.

matTag | integer tag identifying material

(int)

n (int) Number of yield fingers of the CSF-brace

bo Width of an individual yielding finger at its base of the CSF-brace
(float)

h (float) Thickness of an individual yielding finger

fy Yield strength of the steel material of the yielding finger

(float)

E (float) | Modulus of elasticity of the steel material of the yielding finger
L (float) Height of an individual yielding finger
b (float) Strain hardening ratio

RO Parameter that controls the Bauschinger effect. Recommended Values for $Ro=between 10 to
(float) 30

cR1 Parameter that controls the Bauschinger effect. Recommended Value cR1=0.925

(float)

cR2 Parameter that controls the Bauschinger effect. Recommended Value cR2=0.150

(float)

al isotropic hardening parameter, increase of compression yield envelope as proportion of yield
(float) strength after a plastic deformation of a2*(Pp/Kp)

a2 isotropic hardening parameter (see explanation under al). (optional default = 1.0)

(float)

a3 isotropic hardening parameter, increase of tension yield envelope as proportion of yield strength
(float) after a plastic deformation of a4*(Pp/Kp)

a4 isotropic hardening parameter (see explanation under a3). (optional default = 1.0)

(float)

Gray et al. [1] showed that the monotonic backbone curve of a CSF-brace with known properties (n, bo, h, L, £y, E)
after yielding can be expressed as a close-form solution that is given by, P = P,/ cos(2d/L), in which d is the axial
deformation of the brace at increment ¢ and P, is the yield strength of the CSF-brace and is given by the following
expression

P, = nboh?f, /AL

The elastic stiffness of the CSF-brace is given by,
K, =nb,Eh3f,/6L3

See also:

Notes

ViscousDamper Material

uniaxialMaterial (’ViscousDamper’, matTag, K, Cd, alpha, LGap=0.0, NM=1, RelTol=1e-6, AbsTol=1e-
10, MaxHalf=15)
This command is used to construct a ViscousDamper material, which represents the Maxwell Model (linear

100 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/CastFuse_Material

OpenSeesPy Documentation, Release 1.0.0b1

spring and nonlinear dashpot in series). The ViscousDamper material simulates the hysteretic response of non-
linear viscous dampers. An adaptive iterative algorithm has been implemented and validated to solve numeri-
cally the constitutive equations within a nonlinear viscous damper with a high-precision accuracy.

matTag (int)

integer tag identifying material

K (float) Elastic stiffness of linear spring to model the axial
flexibility of a viscous damper (e.g. combined stiff-
ness of the supporting brace and internal damper por-
tion)

Cd (float) Damping coefficient

alpha (float)

Velocity exponent

LGap (float)

Gap length to simulate the gap length due to the pin
tolerance

NM (int)

Employed adaptive numerical algorithm (default
value NM = 1;

¢ 1 = Dormand-Prince54,

¢ 2 = 6th order Adams-Bashforth-Moulton,

* 3 = modified Rosenbrock Triple)

RelTol (float)

Tolerance for absolute relative error control of the
adaptive iterative algorithm (default value 10"-6)

AbsTol (float)

Tolerance for absolute error control of adaptive iter-
ative algorithm (default value 10"-10)

MaxHalf (int)

Maximum number of sub-step iterations within an
integration step (default value 15)

See also:

Notes

BilinearOilDamper Material

uniaxialMaterial (’BilinearOilDamper’, matTag, K, Cd, Fr=1.0, p=1.0, LGap=0.0, NM=1, RelTol=1e-

6, AbsTol=1e-10, MaxHalf=15)

This command is used to construct a BilinearOilDamper material, which simulates the hysteretic response of
bilinear oil dampers with relief valve. Two adaptive iterative algorithms have been implemented and validated
to solve numerically the constitutive equations within a bilinear oil damper with a high-precision accuracy.

1.4. Model Commands

101

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
http://opensees.berkeley.edu/wiki/index.php/ViscousDamper_Material

OpenSeesPy Documentation, Release 1.0.0b1

matTag (int)

integer tag identifying material

K (float) Elastic stiffness of linear spring to model the axial
flexibility of a viscous damper (e.g. combined stiff-
ness of the supporting brace and internal damper por-
tion)

Cd (float) Damping coefficient

Fr (float) Damper relief load (default=1.0, Damper property)

p (float) Post-relief viscous damping coefficient ratio (de-

fault=1.0, linear oil damper)

LGap (float)

Gap length to simulate the gap length due to the pin
tolerance

NM (int)

Employed adaptive numerical algorithm (default
value NM = 1;

¢ 1 = Dormand-Prince54,

¢ 2 = 6th order Adams-Bashforth-Moulton,

* 3 = modified Rosenbrock Triple)

RelTol (float)

Tolerance for absolute relative error control of the
adaptive iterative algorithm (default value 107-6)

AbsTol (float)

Tolerance for absolute error control of adaptive iter-
ative algorithm (default value 10"-10)

MaxHalf (int)

Maximum number of sub-step iterations within an
integration step (default value 15)

See also:

Notes

Modified Ibarra-Medina-Krawinkler Deterioration Model with Bilinear Hysteretic Response (Bilin Ma-

terial)

uniaxialMaterial (’Bilin’, matTag, KO, as_Plus, as_Neg, My_Plus, My_Neg, Lamda_S, Lamda_C,
Lamda_A, Lamda_K, c_S, c_C, c_A, c_K, theta_p_Plus, theta_p_Neg, theta_pc_Plus,
theta_pc_Neg, Res_Pos, Res_Neg, theta_u_Plus, theta_u_Neg, D_Plus, D_Neg, nFac-

tor=0.0)

This command is used to construct a bilin material. The bilin material simulates the modified Ibarra-Krawinkler
deterioration model with bilinear hysteretic response. Note that the hysteretic response of this material has been
calibrated with respect to more than 350 experimental data of steel beam-to-column connections and multivariate
regression formulas are provided to estimate the deterioration parameters of the model for different connection
types. These relationships were developed by Lignos and Krawinkler (2009, 2011) and have been adopted by
PEER/ATC (2010). The input parameters for this component model can be computed interactively from this

link. Use the module Component Model.

102

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
http://opensees.berkeley.edu/wiki/index.php/BilinearOilDamper_Material
http://dimitrios-lignos.research.mcgill.ca/databases/

OpenSeesPy Documentation, Release 1.0.0b1

matTag integer tag identifying material

(int)

KO (float) elastic stiffness

as_Plus | strain hardening ratio for positive loading direction

(float)

as_Neg strain hardening ratio for negative loading direction

(float)

My_Plus | effective yield strength for positive loading direction

(float)

My_Neg effective yield strength for negative loading direction (negative value)

(float)

Lamda_S | Cyclic deterioration parameter for strength deterioration [E_t=Lamda_S*M_y; set Lamda_S

(float) = 0 to disable this mode of deterioration]

Lamda_C | Cyclic deterioration parameter for post-capping strength deterioration [E_t=Lamda_C*M_y;

(float) set Lamda_C = 0 to disable this mode of deterioration]

Lamda_A | Cyclic deterioration parameter for acceleration reloading stiffness deterioration (is not a de-

(float) terioration mode for a component with Bilinear hysteretic response) [Input value is required,
but not used; set Lamda_A = 0].

Lamda_K Cyclic deterioration parameter for unloading stiffness deterioration [E_t=Lamda_K*M_y; set

(float) Lamda_k = 0 to disable this mode of deterioration]

c_S (float) | rate of strength deterioration. The default value is 1.0.

c_C (float) | rate of post-capping strength deterioration. The default value is 1.0.

c_A (float) | rate of accelerated reloading deterioration. The default value is 1.0.

c_K (float) | rate of unloading stiffness deterioration. The default value is 1.0.

theta_p_B Ipre-capping rotation for positive loading direction (often noted as plastic rotation capacity)

(float)

theta_p_Nepre-capping rotation for negative loading direction (often noted as plastic rotation capacity)

(float) (positive value)

theta_pc_|Plosscapping rotation for positive loading direction

(float)

theta_pc | Neogt-capping rotation for negative loading direction (positive value)

(float)

Res_Pos | residual strength ratio for positive loading direction

(float)

Res_Neg | residual strength ratio for negative loading direction (positive value)

(float)

theta_u_PRlnlemate rotation capacity for positive loading direction

(float)

theta_u_Nadtimate rotation capacity for negative loading direction (positive value)

(float)

D_Plus rate of cyclic deterioration in the positive loading direction (this parameter is used to create

(float) assymetric hysteretic behavior for the case of a composite beam). For symmetric hysteretic
response use 1.0.

D_Neg rate of cyclic deterioration in the negative loading direction (this parameter is used to create

(float) assymetric hysteretic behavior for the case of a composite beam). For symmetric hysteretic
response use 1.0.

nFactor | elastic stiffness amplification factor, mainly for use with concentrated plastic hinge elements

(float) (optional, default = 0).

See also:

Notes

1.4. Model Commands 103

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Modified_Ibarra-Medina-Krawinkler_Deterioration_Model_with_Bilinear_Hysteretic_Response_(Bilin_Material)

OpenSeesPy Documentation, Release 1.0.0b1

Modified Ibarra-Medina-Krawinkler Deterioration Model with Peak-Oriented Hysteretic Response
(ModIMKPeakOriented Material)

uniaxialMaterial ('ModIMKPeakOriented’, matTag, KO, as_Plus, as_Neg, My_Plus, My_Neg, Lamda_S,
Lamda_C, Lamda_A, Lamda_K, c_S, c¢_C, c_A, c_K, theta_p_Plus, theta_p_Neg,
theta_pc_Plus, theta_pc_Neg, Res_Pos, Res_Neg, theta_u_Plus, theta_u_Neg,
D_Plus, D_Neg)
This command is used to construct a ModIMKPeakOriented material. This material simulates the modified
Ibarra-Medina-Krawinkler deterioration model with peak-oriented hysteretic response. Note that the hysteretic
response of this material has been calibrated with respect to 200 experimental data of RC beams in order to
estimate the deterioration parameters of the model. This information was developed by Lignos and Krawinkler
(2012). NOTE: before you use this material make sure that you have downloaded the latest OpenSees version.
A youtube video presents a summary of this model including the way to be used within openSees youtube link.

104 Chapter 1. Author

http://youtu.be/YHBHQ-xuybE

OpenSeesPy Documentation, Release 1.0.0b1

matTag integer tag identifying material

(int)

KO (float) elastic stiffness

as_Plus strain hardening ratio for positive loading direction

(float)

as_Neg strain hardening ratio for negative loading direction

(float)

My_Plus effective yield strength for positive loading direction

(float)

My_Neg effective yield strength for negative loading direction (negative value)

(float)

Lamda_S Cyclic deterioration parameter for strength deterioration [E_t=Lamda_S*M_y, see Lignos

(float) and Krawinkler (2011); set Lamda_S = 0 to disable this mode of deterioration]

Lamda_C Cyclic deterioration parameter for post-capping strength deterioration [E_t=Lamda_C*M_y,

(float) see Lignos and Krawinkler (2011); set Lamda_C = 0 to disable this mode of deterioration]

Lamda_A Cyclic deterioration parameter for accelerated reloading stiffness deterioration

(float) [E_t=Lamda_A*M_y, see Lignos and Krawinkler (2011); set Lamda_A = 0 to disable
this mode of deterioration]

Lamda_K Cyclic deterioration parameter for unloading stiffness deterioration [E_t=Lamda_K*M_y, see

(float) Lignos and Krawinkler (2011); set Lamda_K = 0 to disable this mode of deterioration]

c_S (float) | rate of strength deterioration. The default value is 1.0.

c_C (float) | rate of post-capping strength deterioration. The default value is 1.0.

c_A (float) | rate of accelerated reloading deterioration. The default value is 1.0.

c_K (float) | rate of unloading stiffness deterioration. The default value is 1.0.

theta_p_P[lpre-capping rotation for positive loading direction (often noted as plastic rotation capacity)

(float)

theta_p_Negre-capping rotation for negative loading direction (often noted as plastic rotation capacity)

(float) (must be defined as a positive value)

theta_pc_P post-capping rotation for positive loading direction

(float)

theta_pc_Npost-capping rotation for negative loading direction (must be defined as a positive value)

(float)

Res_Pos residual strength ratio for positive loading direction

(float)

Res_Neg residual strength ratio for negative loading direction (must be defined as a positive value)

(float)

theta_u_P[luHlimate rotation capacity for positive loading direction

(float)

theta_u_Nedgltimate rotation capacity for negative loading direction (must be defined as a positive value)

(float)

D_Plus rate of cyclic deterioration in the positive loading direction (this parameter is used to create

(float) assymetric hysteretic behavior for the case of a composite beam). For symmetric hysteretic
response use 1.0.

D_Neg rate of cyclic deterioration in the negative loading direction (this parameter is used to create

(float) assymetric hysteretic behavior for the case of a composite beam). For symmetric hysteretic
response use 1.0.

See also:

Notes

1.4. Model Commands 105

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Modified_Ibarra-Medina-Krawinkler_Deterioration_Model_with_Peak-Oriented_Hysteretic_Response_(ModIMKPeakOriented_Material)

OpenSeesPy Documentation, Release 1.0.0b1

Modified Ibarra-Medina-Krawinkler Deterioration Model with Pinched Hysteretic Response (Mod-
IMKPinching Material)

uniaxialMaterial ('ModIMKPinching’, matTag, KO, as_Plus, as_Neg, My_Plus, My_Neg, FprPos,
FprNeg, A_pinch, Lamda_S, Lamda_C, Lamda_A, Lamda_K, c_S, c_C, c_A,
c_K, theta_p_Plus, theta_p_Neg, theta_pc_Plus, theta_pc_Neg, Res_Pos, Res_Neg,
theta_u_Plus, theta_u_Neg, D_Plus, D_Neg)
This command is used to construct a ModIMKPinching material. This material simulates the modified Ibarra-
Medina-Krawinkler deterioration model with pinching hysteretic response. NOTE: before you use this mate-
rial make sure that you have downloaded the latest OpenSees version. A youtube video presents a summary
of this model including the way to be used within openSees youtube link.

106 Chapter 1. Author

http://youtu.be/YHBHQ-xuybE

OpenSeesPy Documentation, Release 1.0.0b1

matTag integer tag identifying material

(int)

KO (float) elastic stiffness

as_Plus strain hardening ratio for positive loading direction

(float)

as_Neg strain hardening ratio for negative loading direction

(float)

My_Plus effective yield strength for positive loading direction

(float)

My_Neg effective yield strength for negative loading direction (Must be defined as a negative value)

(float)

FprPos Ratio of the force at which reloading begins to force corresponding to the maximum historic

(float) deformation demand (positive loading direction)

FprNeg Ratio of the force at which reloading begins to force corresponding to the absolute maximum

(float) historic deformation demand (negative loading direction)

A_Pinch Ratio of reloading stiffness

(float)

Lamda_S Cyclic deterioration parameter for strength deterioration [E_t=Lamda_S*M_y, see Lignos

(float) and Krawinkler (2011); set Lamda_S = 0 to disable this mode of deterioration]

Lamda_C Cyclic deterioration parameter for post-capping strength deterioration [E_t=Lamda_C*M_y,

(float) see Lignos and Krawinkler (2011); set Lamda_C = 0 to disable this mode of deterioration]

Lamda_A Cyclic deterioration parameter for accelerated reloading stiffness deterioration

(float) [E_t=Lamda_A*M_y, see Lignos and Krawinkler (2011); set Lamda_A = 0 to disable
this mode of deterioration]

Lamda_K Cyclic deterioration parameter for unloading stiffness deterioration [E_t=Lamda_K*M_y, see

(float) Lignos and Krawinkler (2011); set Lamda_K = 0 to disable this mode of deterioration]

c_S (float) | rate of strength deterioration. The default value is 1.0.

c_C (float) | rate of post-capping strength deterioration. The default value is 1.0.

c_A (float) | rate of accelerated reloading deterioration. The default value is 1.0.

c_K (float) rate of unloading stiffness deterioration. The default value is 1.0.

theta_p_P[lpee-capping rotation for positive loading direction (often noted as plastic rotation capacity)

(float)

theta_p_Negre-capping rotation for negative loading direction (often noted as plastic rotation capacity)

(float) (must be defined as a positive value)

theta_pc_P post-capping rotation for positive loading direction

(float)

theta_pc_Npost-capping rotation for negative loading direction (must be defined as a positive value)

(float)

Res_Pos residual strength ratio for positive loading direction

(float)

Res_Neg residual strength ratio for negative loading direction (must be defined as a positive value)

(float)

theta_u_P[lukimate rotation capacity for positive loading direction

(float)

theta_u_Nggltimate rotation capacity for negative loading direction (must be defined as a positive value)

(float)

D_Plus rate of cyclic deterioration in the positive loading direction (this parameter is used to create

(float) assymetric hysteretic behavior for the case of a composite beam). For symmetric hysteretic
response use 1.0.

D_Neg rate of cyclic deterioration in the negative loading direction (this parameter is used to create

(float) assymetric hysteretic behavior for the case of a composite beam). For symmetric hysteretic

response use 1.0.

1.4. Model Comm

ands 107

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

See also:

Notes

SAWS Material

uniaxialMaterial ('SAWS’, matlag, FO, FI, DU, SO, R1, R2, R3, R4, alph, beta)
This file contains the class definition for SAWSMaterial. SAWSMaterial provides the implementation of a
one-dimensional hysteretic model develeped as part of the CUREe Caltech wood frame project.

matTag integer tag identifying material

(int)

FO (float) Intercept strength of the shear wall spring element for the asymtotic line to the envelope curve
FO>FI>0

FI (float) Intercept strength of the spring element for the pinching branch of the hysteretic curve. (FI >
0).

DU (float) Spring element displacement at ultimate load. (DU > 0).

S0 (float) Initial stiffness of the shear wall spring element (SO > 0).

R1 (float) Stiffness ratio of the asymptotic line to the spring element envelope curve. The slope of this
line is R1 SO. (0 <R1 < 1.0).

R2 (float) Stiffness ratio of the descending branch of the spring element envelope curve. The slope of
this line is R2 SO. (R2 < 0).

R3 (float) Stiffness ratio of the unloading branch off the spring element envelope curve. The slope of this
line is R3 SO. (R3 1).

R4 (float) Stiffness ratio of the pinching branch for the spring element. The slope of this line is R4 SO. (
R4 > 0).

alpha Stiffness degradation parameter for the shear wall spring element. (ALPHA > 0).

(float)

beta Stiffness degradation parameter for the spring element. (BETA > 0).

(float)

See also:

Notes

BarSlip Material

uniaxialMaterial (’BarSlip’, matlag, fc, fy, Es, fu, Eh, db, ld, nb, depth, height, ancLratio=1.0, bsFlag,

type, damage="Damage’, unit="psi’)

This command is used to construct a uniaxial material that simulates the bar force versus slip response of a
reinforcing bar anchored in a beam-column joint. The model exhibits degradation under cyclic loading. Cyclic
degradation of strength and stiffness occurs in three ways: unloading stiffness degradation, reloading stiffness
degradation, strength degradation.

108

Chapter 1. Author

http://opensees.berkeley.edu/wiki/index.php/Modified_Ibarra-Medina-Krawinkler_Deterioration_Model_with_Pinched_Hysteretic_Response_(ModIMKPinching_Material)
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/SAWS_Material

OpenSeesPy Documentation, Release 1.0.0b1

matTag integer tag identifying material

(int)

fc (float) | positive floating point value defining the compressive strength of the concrete in which the
reinforcing bar is anchored

fy (float) | positive floating point value defining the yield strength of the reinforcing steel

Es (float) | floating point value defining the modulus of elasticity of the reinforcing steel

fu (float) | positive floating point value defining the ultimate strength of the reinforcing steel

Eh (float) | floating point value defining the hardening modulus of the reinforcing steel

1d (float) | floating point value defining the development length of the reinforcing steel

db (float) | point value defining the diameter of reinforcing steel

nb (float) | an integer defining the number of anchored bars

depth floating point value defining the dimension of the member (beam or column) perpendicular to

(float) the dimension of the plane of the paper

height floating point value defining the height of the flexural member, perpendicular to direction in

(float) which the reinforcing steel is placed, but in the plane of the paper

ancLratio floating point value defining the ratio of anchorage length used for the reinforcing bar to the

(float) dimension of the joint in the direction of the reinforcing bar (optional, default: 1.0)

bsFlag string indicating relative bond strength for the anchored reinforcing bar (options: 'Strong'

(str) or 'Weak"')

type (str) | string indicating where the reinforcing bar is placed. (options: 'beamtop', 'beambot ' or
'column')

damage string indicating type of damage:whether there is full damage in the material or no damage

(str) (optional, options: 'Damage’', 'NoDamage' ; default: 'Damage"')

unit (str) | string indicating the type of unit system used (optional, options: 'psi', 'MPa’', 'Pa’,
'psf', 'ksi', 'ksf') (default: 'psi'/ 'MPa')

See also:

Notes

Bond SPO01 - - Strain Penetration Model for Fully Anchored Steel Reinforcing Bars

uniaxialMaterial (’Bond_SP0I’, matlag, Fy, Sy, Fu, Su, b, R)
This command is used to construct a uniaxial material object for capturing strain penetration effects at the
column-to-footing, column-to-bridge bent caps, and wall-to-footing intersections. In these cases, the bond slip
associated with strain penetration typically occurs along a portion of the anchorage length. This model can also
be applied to the beam end regions, where the strain penetration may include slippage of the bar along the entire
anchorage length, but the model parameters should be chosen appropriately.

This model is for fully anchored steel reinforcement bars that experience bond slip along a portion of the an-
chorage length due to strain penetration effects, which are usually the case for column and wall longitudinal
bars anchored into footings or bridge joints

matTag (int) | integer tag identifying material

Fy (float) Yield strength of the reinforcement steel

Sy (float) Rebar slip at member interface under yield stress. (see NOTES below)

Fu (float) Ultimate strength of the reinforcement steel

Su (float) Rebar slip at the loaded end at the bar fracture strength

b (float) Initial hardening ratio in the monotonic slip vs. bar stress response (0.3~0.5)
R (float) Pinching factor for the cyclic slip vs. bar response (0.5~1.0)

See also:

1.4. Model Commands 109

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://opensees.berkeley.edu/wiki/index.php/BARSLIP_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

Notes

Fatigue Material

uniaxialMaterial ('Fatigue’, matlag, tag, -EO’, E0=0.191, -m’, m=-0.458, ’-min’, min=-1el6, ’-max’,

max=1el6)
The fatigue material uses a modified rainflow cycle counting algorithm to accumulate damage in a material

using Miner’s Rule. Element stress/strain relationships become zero when fatigue life is exhausted.

matTag (int) | integer tag identifying material
tag (float) Unique material object integer tag for the material that is being wrapped
EO (float) Value of strain at which one cycle will cause failure (default 0.191)
m (float) Slope of Coffin-Manson curve in log-log space (default -0.458)
min (float) Global minimum value for strain or deformation (default -1e16)
max (float) Global maximum value for strain or deformation (default 1e16)
See also:
Notes

Impact Material

uniaxialMaterial (’ImpactMaterial’, matTag, K1, K2, sigy, gap)
This command is used to construct an impact material object

matTag (int) | integer tag identifying material
K1 (float) initial stiffness

K2 (float) secondary stiffness

sigy (float) | yield displacement

gap (float) initial gap

See also:
Notes
Hyperbolic Gap Material

uniaxialMaterial (’HyperbolicGapMaterial’, matTag, Kmax, Kur, Rf, Fult, gap)
This command is used to construct a hyperbolic gap material object.

matTag (int) | integer tag identifying material

Kmax (float) initial stiffness

Kur (float) unloading/reloading stiffness

Rf (float) failure ratio

Fult (float) ultimate (maximum) passive resistance
gap (float) initial gap

Note:

1. This material is implemented as a compression-only gap material. Fult and gap should be input as negative
values.

110 Chapter 1. Author

http://opensees.berkeley.edu/wiki/index.php/Bond_SP01_-_-_Strain_Penetration_Model_for_Fully_Anchored_Steel_Reinforcing_Bars
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Fatigue_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Impact_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

2. Recomended Values:

e Kmax = 20300 kN/m of abutment width

L]

Kcur = Kmax

Rf=0.7

Fult =-326 kN per meter of abutment width

gap =-2.54 cm

See also:

Notes

Limit State Material

uniaxialMaterial (’'LimitState’, matTag, slp, elp, s2p, e2p, s3p, e3p, sin, eln, s2n, e2n, s3n, e3n, pinchX,
pinchY, damagel, damage2, beta, curveTag, curveType)

This command is used to construct a uniaxial hysteretic material object with pinching of force and deformation,
damage due to ductility and energy, and degraded unloading stiffness based on ductility. Failure of the material
is defined by the associated Limit Curve.

matTag (int) | integer tag identifying material

slp elp | stress and strain (or force & deformation) at first point of the envelope in the positive

(float) direction

s2p e2p | stress and strain (or force & deformation) at second point of the envelope in the positive

(float) direction

s3p e3p | stress and strain (or force & deformation) at third point of the envelope in the positive

(float) direction

sln eln | stress and strain (or force & deformation) at first point of the envelope in the negative

(float) direction

s2n e2n | stress and strain (or force & deformation) at second point of the envelope in the negative

(float) direction

s3n e3n | stress and strain (or force & deformation) at third point of the envelope in the negative

(float) direction

pinchX pinching factor for strain (or deformation) during reloading

(float)

pinchy pinching factor for stress (or force) during reloading

(float)

damagel damage due to ductility: D1(m-1)

(float)

damage? damage due to energy: D2(Ei/Eult)

(float)

beta (float) power used to determine the degraded unloading stiffness based on ductility, m-b (optional,
default=0.0)

curveTag an integer tag for the Limit Curve defining the limit surface

(int)

curveType | an integer defining the type of LimitCurve (0 = no curve, 1 = axial curve, all other curves

(int) can be any other integer)

Note:

* negative backbone points should be entered as negative numeric values

1.4. Model Commands 111

http://opensees.berkeley.edu/wiki/index.php/Hyperbolic_Gap_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

See also:

Notes

MinMax Material

uniaxialMaterial ('MinMax’, matTag, otherTag, ’-min’, minStrain=1e-16, ’-max’, maxStrain=1e16)
This command is used to construct a MinMax material object. This stress-strain behaviour for this material is
provided by another material. If however the strain ever falls below or above certain threshold values, the other
material is assumed to have failed. From that point on, values of 0.0 are returned for the tangent and stress.

matTag (int) integer tag identifying material

otherTag (float) tag of the other material

minStrain (float) | minimum value of strain. optional default =-1.0e16.
maxStrain (float) | max value of strain. optional default = 1.0e16.

See also:

Notes
ElasticBilin Material
uniaxialMaterial (’ElasticBilin’, matTag, EP1, EP2, epsP2, ENI=EPI1, EN2=EP2, epsN2=-epsP2)

This command is used to construct an elastic bilinear uniaxial material object. Unlike all other bilinear materials,
the unloading curve follows the loading curve exactly.

matTag (int) | integer tag identifying material

EP1 (float) tangent in tension for stains: 0 <= strains <= epsP2

EP2 (float) tangent when material in tension with strains > epsP2

epsP2 (float) | strain at which material changes tangent in tension.

EN1 (float) optional, default = EP 1. tangent in compression for stains: 0 < strains <= epsN2
EN2 (float) optional, default = EP2. tangent in compression with strains < epsN2

epsN2 (float) | optional, default = —~epsP2. strain at which material changes tangent in compression.

Note: epsO can not be controlled. It is always zero.

See also:

Notes

ElasticMultiLinear Material

uniaxialMaterial (’ElasticMultiLinear’, matlag, eta=0.0, ’-strain’, *strainPoints, ’-stress’, *stress-

Points)
This command is used to construct a multi-linear elastic uniaxial material object. The nonlinear stress-strain

relationship is given by a multi-linear curve that is define by a set of points. The behavior is nonlinear but it is
elastic. This means that the material loads and unloads along the same curve, and no energy is dissipated. The
slope given by the last two specified points on the positive strain axis is extrapolated to infinite positive strain.

112 Chapter 1. Author

http://opensees.berkeley.edu/wiki/index.php/Limit_State_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/MinMax_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/ElasticBilin_Material

OpenSeesPy Documentation, Release 1.0.0b1

Similarly, the slope given by the last two specified points on the negative strain axis is extrapolated to infinite
negative strain. The number of provided strain points needs to be equal to the number of provided stress points.

matTag (int) integer tag identifying material

eta (float) damping tangent (optional, default=0.0)
strainPoints (list (float)) | list of strain points along stress-strain curve
stressPoints (list (float)) | list of stress points along stress-strain curve

See also:
Notes
MultiLinear

uniaxialMaterial ('MultiLinear’, matTag, *pts)
This command is used to construct a uniaxial multilinear material object.

matTag (int) | integer tag identifying material

pts (list | alist of strain and stress points

(float)) pts = [strainl, stressl, strain2, stress2, ...,]
See also:

Notes

Initial Strain Material

uniaxialMaterial (’InitStrainMaterial’, matTag, otherTag, initStrain)
This command is used to construct an Initial Strain material object. The stress-strain behaviour for this material
is defined by another material. Initial Strain Material enables definition of initial strains for the material under
consideration. The stress that corresponds to the initial strain will be calculated from the other material.

matTag (int) integer tag identifying material
otherTag (int) tag of the other material
initStrain (float) | initial strain

See also:

Notes

Initial Stress Material

uniaxialMaterial (’InitStressMaterial’, matTag, otherTag, initStress)
This command is used to construct an Initial Stress material object. The stress-strain behaviour for this material
is defined by another material. Initial Stress Material enables definition of initial stress for the material under
consideration. The strian that corresponds to the initial stress will be calculated from the other material.

matTag (int) integer tag identifying material
otherTag (float) tag of the other material
initStress (float) | initial stress

1.4. Model Commands 113

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/ElasticMultiLinear_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/MultiLinear_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Initial_Strain_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

See also:
Notes
Pathindependent Material

uniaxialMaterial (’Pathindependent’, matTag, tag)
This command is to create a PathIndependent material

matTag (int) | integer tag identifying material
tag (int) a pre-defined material

Pinching4 Material

uniaxialMaterial (’Pinching4’, matTag, ePfl, ePdl, ePf2, ePd2, ePf3, ePd3, ePf4, ePd4 [, eNfl, eNdl,
eNf2, eNd2, eNf3, eNd3, eNf4, eNd4], rDispP, rForceP, uForceP[, rDispN, rForceN,
uForceN], gKl1, gK2, gK3, gK4, gKLim, gD1, gD2, gD3, gD4, gDLim, gF 1, gF2, gF3,
gF4, gFLim, gE, dmgType)
This command is used to construct a uniaxial material that represents a ‘pinched’ load-deformation response
and exhibits degradation under cyclic loading. Cyclic degradation of strength and stiffness occurs in three ways:
unloading stiffness degradation, reloading stiffness degradation, strength degradation.

114 Chapter 1. Author

http://opensees.berkeley.edu/wiki/index.php/Initial_Stress_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

matTag (int) | integer tag identifying material

ePfl ePf2 | floating point values defining force points on the positive response envelope

ePf3 ePf4

(float)

ePdl ePd2 | floating point values defining deformation points on the positive response envelope

ePd3 ePd4

(float)

eNfl eNf2 | floating point values defining force points on the negative response envelope

eNf3 eNf4

(float)

eNdl eNd2 | floating point values defining deformation points on the negative response envelope

eNd3 eNd4

(float)

rDispP floating point value defining the ratio of the deformation at which reloading occurs to the

(float) maximum historic deformation demand

fFoceP floating point value defining the ratio of the force at which reloading begins to force cor-

(float) responding to the maximum historic deformation demand

uForceP floating point value defining the ratio of strength developed upon unloading from negative

(float) load to the maximum strength developed under monotonic loading

rDispN floating point value defining the ratio of the deformation at which reloading occurs to the

(float) minimum historic deformation demand

fFoceN floating point value defining the ratio of the force at which reloading begins to force cor-

(float) responding to the minimum historic deformation demand

uForceN floating point value defining the ratio of strength developed upon unloading from negative

(float) load to the minimum strength developed under monotonic loading

gK1l gK2 gK3 | floating point values controlling cyclic degradation model for unloading stiffness degrada-

gK4 gKLim | tion

(float)

gDl gD2 gD3 | floating point values controlling cyclic degradation model for reloading stiffness degrada-

gD4 gDLim | tion

(float)

gF1l gF2 gF3 | floating point values controlling cyclic degradation model for strength degradation

gF4 gFLim

(float)

gE (float) floating point value used to define maximum energy dissipation under cyclic loading. Total
energy dissipation capacity is defined as this factor multiplied by the energy dissipated
under monotonic loading.

dmgType (str) | string to indicate type of damage (option: 'cycle', 'energy"')

See also:

Engineered Cementitious Composites Material

uniaxialMaterial ('ECCOI’, matTag, sigt0, epst0, sigtl, epstl, epst2, sigc0, epsc0, epscl, alphaTl, al-
phaT2, alphaC, alphaCU, betaT, betaC)

This command is used to construct a uniaxial Engineered Cementitious Composites (ECC)material object based
on the ECC material model of Han, et al. (see references). Reloading in tension and compression is linear.

1.4. Model Commands

115

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
http://opensees.berkeley.edu/wiki/index.php/Pinching4_Material

OpenSeesPy Documentation, Release 1.0.0b1

See also:

Notes

matTag (int)

integer tag identifying material

sigtO0 (float)

tensile cracking stress

epst0 (float)

strain at tensile cracking stress

sigtl (float)

peak tensile stress

epst1 (float)

strain at peak tensile stress

sigt2 (float)

ultimate tensile strain

sigc0 (float)

compressive strength (see NOTES)

epscO (float)

strain at compressive strength (see NOTES)

epscl (float)

ultimate compressive strain (see NOTES)

alphaTl1 (float)

exponent of the unloading curve in tensile strain hardening region

alphaT2 (float)

exponent of the unloading curve in tensile softening region

alphac (float)

exponent of the unloading curve in the compressive softening

alphacCuU (float)

exponent of the compressive softening curve (use 1 for linear softening)

betaT (float)

parameter to determine permanent strain in tension

betacC (float)

parameter to determine permanent strain in compression

SelfCentering Material

uniaxialMaterial (’'SelfCentering’, matlag, kl, k2, sigAct, beta[, epsSlip, epsBear, rBear])

This command is used to construct a uniaxial self-centering (flag-shaped) material object with optional non-

recoverable slip behaviour and an optional stiffness increase at high strains (bearing behaviour).

See also:

Notes

matTag (int)

integer tag identifying material

k1 (float)

Initial Stiffness

k2 (float)

Post-Activation Stiffness (O< k2" "< k1)

sigAct (float)

Forward Activation Stress/Force

beta (float)

Ratio of Forward to Reverse Activation Stress/Force

epsSlip (float)

slip Strain/Deformation (if epsS1ip = 0, there will be no slippage)

epsBear (float)

Bearing Strain/Deformation (if epsBear = 0, there will be no bearing)

rBear (float)

Ratio of Bearing Stiffness to Initial Stiffness k1

Viscous Material

uniaxialMaterial (’Viscous’, matTag)
This command is used to construct a uniaxial viscous material object. stress =C(strain-rate)*alpha

matTag (int)

integer tag identifying material

C (float)

damping coeficient

alpha (float)

power factor (=1 means linear damping)

Note:

116

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Engineered_Cementitious_Composites_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/SelfCentering_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

1. This material can only be assigned to truss and zeroLength elements.

2. This material can not be combined in parallel/series with other materials. When defined in parallel with other
materials it is ignored.

See also:

Notes
BoucWen Material
uniaxialMaterial ('BoucWen’, matTag, alpha, ko, n, gamma, beta, Ao, deltaA, deltaNu, deltaEta)

This command is used to construct a uniaxial Bouc-Wen smooth hysteretic material object. This material model
is an extension of the original Bouc-Wen model that includes stiffness and strength degradation (Baber and

Noori (1985)).
matTag (int) integer tag identifying material
alpha (float) ratio of post-yield stiffness to the initial elastic stiffenss (0< a <1)
ko (float) initial elastic stiffness
n (float) parameter that controls transition from linear to nonlinear range (as n increases the tran-

sition becomes sharper; n is usually grater or equal to 1)

gamma beta | parameters that control shape of hysteresis loop; depending on the values of v and
(float) softening, hardening or quasi-linearity can be simulated (look at the NOTES)

Ao deltaA | parameters that control tangent stiffness

(float)
deltaNu parameters that control material degradation
deltakEta
(float)

See also:

Notes

BWBN Material

uniaxialMaterial ('BWBN’, matlag, alpha, ko, n, gamma, beta, Ao, q, zetas, p, Shi, deltaShi, lambda,

tol, maxlter)
This command is used to construct a uniaxial Bouc-Wen pinching hysteretic material object. This material

model is an extension of the original Bouc-Wen model that includes pinching (Baber and Noori (1986) and
Foliente (1995)).

1.4. Model Commands 117

http://opensees.berkeley.edu/wiki/index.php/Viscous_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/BoucWen_Material

OpenSeesPy Documentation, Release 1.0.0b1

matTag (int) integer tag identifying material

alpha (float) ratio of post-yield stiffness to the initial elastic stiffenss (0< « <1)

ko (float) initial elastic stiffness

n (float) parameter that controls transition from linear to nonlinear range (as n increases the

transition becomes sharper; n is usually grater or equal to 1)

gamma beta (float) | parameters that control shape of hysteresis loop; depending on the values of v and
B softening, hardening or quasi-linearity can be simulated (look at the BoucWen
Material)

Ao (float) parameter that controls tangent stiffness

g zetas p Shi | parameters that control pinching

deltaShi lambda

(float)

tol (float) tolerance

maxIter (float) maximum iterations
See also:

Notes

KikuchiAikenHDR Material

uniaxialMaterial (’KikuchiAikenHDR’, matTag, tp, ar, hr[, -coGHU’, cg, ch, cu][, -coMSS’, rs, rf])
This command is used to construct a uniaxial KikuchiAikenHDR material object. This material model produces
nonlinear hysteretic curves of high damping rubber bearings (HDRs).

matTag integer tag identifying material
(int)
tp (str) rubber type (see note 1)

ar (float) area of rubber [unit: m"2] (see note 2)
hr (float) total thickness of rubber [unit: m] (see note 2)
cg ch cu | correction coefficients for equivalent shear modulus (cg), equivalent viscous daming ratio

(float) (ch), ratio of shear force at zero displacement (cu).
rs rf | reduction rate for stiffness (rs) and force (rf) (see note 3)
(float)

Note:
1. Following rubber types for tp are available:
* 'X0.6" Bridgestone X0.6, standard compressive stress, up to 400% shear strain
* 'X0.6-0MPa"' Bridgestone X0.6, zero compressive stress, up to 400% shear strain
e 'X0.4"' Bridgestone X0.4, standard compressive stress, up to 400% shear strain
e 'X0.4-0MPa' Bridgestone X0.4, zero compressive stress, up to 400% shear strain
e 'X0.3" Bridgestone X0.3, standard compressive stress, up to 400% shear strain
e 'X0.3-0MPa' Bridgestone X0.3, zero compressive stress, up to 400% shear strain

2. This material uses SI unit in calculation formula. ar and hr must be converted into [m”2] and [m], respectively.

118 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/BWBN_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

3. rsand rf areavailable if this material is applied to multipleShearSpring (MSS) element. Recommended values

_ 1 _ 1 . . .
are rs = ST T ain(rri/n) andrf = ST T sin(rri/n)” where n is the number of springs in the MSS. For example,

when n=8, rs =0.2500, r £ =0.1989.

See also:

Notes

KikuchiAikenLRB Material

uniaxialMaterial (’KikuchiAikenLRB’, matTag, type, ar, hr, gr, ap, tp, alph, beta[, T, temp] [, -
coKQ’, rk, rq] [, -coMSS’, rs, rf])
This command is used to construct a uniaxial KikuchiAikenLRB material object. This material model produces
nonlinear hysteretic curves of lead-rubber bearings.

matTag (int) | integer tag identifying material

type (int) rubber type (see note 1)

ar (float) area of rubber [unit: m"2]

hr (float) total thickness of rubber [unit: m]

gr (float) shear modulus of rubber [unit: N/m”"2]
ap (float) area of lead plug [unit: m"2]

tp (float) yield stress of lead plug [unit: N/m”2]

alph (float) shear modulus of lead plug [unit: N/m”2]

beta (float) | ratio of initial stiffness to yielding stiffness

temp (float) temperature [unit: °C]

rk rq (float) | reduction rate for yielding stiffness (rk) and force at zero displacement (rq)
rs rf (float) | reduction rate for stiffness (rs) and force (rf) (see note 3)

Note:
1. Following rubber types for t ype are available:
¢ 1 lead-rubber bearing, up to 400% shear strain [Kikuchi et al., 2010 & 2012]
2. This material uses SI unit in calculation formula. Input arguments must be converted into [m], [m"2], [N/m”2].

3. rs and rf are available if this material is applied to multipleShearSpring (MSS) element. Recommended

values are rs = nl% and rf = 5 where n is the number of springs in the MSS.

"o sin(mxi/n)? _on—1 sm(ﬂ'*z/n)

For example, when n=8, rs =0.2500 and rf = 0.1989.

See also:

Notes

AxialSp Material

uniaxialMaterial (’AxialSp’, matTag, sce,fty,fcy[, bte, bty, bcy,fcr])
This command is used to construct a uniaxial AxialSp material object. This material model produces axial
stress-strain curve of elastomeric bearings.

1.4. Model Commands 119

http://opensees.berkeley.edu/wiki/index.php/KikuchiAikenHDR_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/KikuchiAikenLRB_Material

OpenSeesPy Documentation, Release 1.0.0b1

matTag (int)

integer tag identifying material

sce (float)

compressive modulus

fty fcy (float)

yield stress under tension (£ty) and compression (£cy) (see note 1)

bte bty bcy
(float)

reduction rate for tensile elastic range (bte), tensile yielding (bty) and compressive
yielding (bcy) (see note 1)

fcr (float)

target point stress (see note 1)

Note:

1. Input parameters are required to satisfy followings.

fcy<00<fty

0.0<=bty <bte<=1.0

0.0<=bcy<=1.0

fcy <= fcr<=0.0

See also:

Notes

AxialSpHD Material

uniaxialMaterial (’AxialSpHD’, matTag, sce, fty, fcy[, bte, bty, bth, bcy, fer, ath])
This command is used to construct a uniaxial AxialSpHD material object. This material model produces axial
stress-strain curve of elastomeric bearings including hardening behavior.

matTag (int)

integer tag identifying material

sce (float)

compressive modulus

ftyl
(float)

fcy

yield stress under tension (£ty) and compression (£cy) (see note 1)

bte bty bth
bcy (float)

reduction rate for tensile elastic range (bte), tensile yielding (bty), tensile hardening
(bth) and compressive yielding (bcy) (see note 1)

fcr (float)

target point stress (see note 1)

Note:

1. Input parameters are required to satisfy followings.

fcy<00< fty

0.0<=bty<bth<bte<=1.0

0.0<=bcy<=1.0
fecy<=fcr<=0.0
1.0<=ath

See also:

Notes

120

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/AxialSp_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/AxialSpHD_Material

OpenSeesPy Documentation, Release 1.0.0b1

Pinching Limit State Material

This command is used to construct a uniaxial material that simulates a pinched load-deformation response and exhibits
degradation under cyclic loading. This material works with the RotationShearCurve limit surface that can monitor a
key deformation and/or a key force in an associated frame element and trigger a degrading behavior in this material
when a limiting value of the deformation and/or force are reached. The material can be used in two modes: 1) direct in-
put mode, where pinching and damage parameters are directly input; and 2) calibrated mode for shear-critical concrete
columns, where only key column properties are input for model to fully define pinching and damage parameters.

uniaxialMaterial (’PinchingLimitStateMaterial’, matTag, nodeT, nodeB, driftAxis, Kelas, crvITyp, crv-
Tag, YpinchUPN, YpinchRPN, XpinchRPN, YpinchUNP, YpinchRNP, XpinchRNP,
dmgStrsLimE, dmgDispMax, dmgEl, dmgE2, dmgE3, dmgE4, dmgELim, dmgRI,
dmgR2, dmgR3, dmgR4, dmgRLim, dmgRCyc, dmgSIl, dmgS2, dmgS3, dmgS4,
dmgSLim, dmgSCyc)
MODE 1: Direct Input

1.4. Model Commands 121

OpenSeesPy Documentation, Release 1.0.0b1

matT

(int)

amteger tag identifying material

node

(int)

Tinteger node tag to define the first node at the extreme end of the associated flexural frame member
(L3 or D5 in Figure)

node

(int)

Binteger node tag to define the last node at the extreme end of the associated flexural frame member
(L2 or D2 in Figure)

drif
(int)

t inteiger to indicate the drift axis in which lateral-strength degradation will occur. This axis should be
orthogonal to the axis of measured rotation (see rotAxis in Rotation Shear Curve definition)
driftAxis =1 - Drift along the x-axis driftAxis =2 — Drift along the y-axis driftAxis =
3 — Drift along the z-axis

Kelg
(float

sfloating point value to define the initial material elastic stiffness (Kelastic); Kelas > 0

crvT]

yimteger flag to indicate the type of limit curve associated with this material.

(int) | crvTyp =0—No limit curve crvTyp = 1 — axial limit curve crvTyp = 2 — RotationShearCurve
crvTjainteger tag for the unique limit curve object associated with this material

(int)

YpinchHodihg point unloading force pinching factor for loading in the negative direction. Note: This value
(float) must be between zero and unity

Ypinlceahhg point reloading force pinching factor for loading in the negative direction. Note: This value
(float) must be between negative one and unity

Xpinclieaing point reloading displacement pinching factor for loading in the negative direction. Note:
(float) This value must be between negative one and unity

YpincHoating point unloading force pinching factor for loading in the positive direction. Note: This value
(float) must be between zero and unity

YpincH®atihg point reloading force pinching factor for loading in the positive direction. Note: This value
(float) must be between negative one and unity

Xpinjclidating point reloading displacement pinching factor for loading in the positive direction. Note: This
(float) value must be between negative one and unity

dmgs
(float

t fedtingfoint force limit for elastic stiffness damage (typically defined as the lowest of shear strength
or shear at flexrual yielding). This value is used to compute the maximum deformation at flexural
yield (dmax Eq. 1) and using the initial elastic stiffness (Kelastic) the monotonic energy (Emono Eq.
1) to yield. Input 1 if this type of damage is not required and set dmgE1l, dmgE2, dmgE3, dmgE4,
and dmgELim to zero

dmgD|
(float

1 fpaig point for ultimate drift at failure (dmax Eq. 1) and is used for strength and stiffness damage.
This value is used to compute the monotonic energy at axial failure (Emono Eq. 2) by computing the
area under the backbone in the positive loading direction up to dmax. Input 1 if this type of damage is
not required and set dmgR1, dmgR2, dmgR3, dmgR4, and dmgRLim to zero for reloading stiffness
damage. Similarly set dmgS1, dmgS2, dmgS3, dmgS4, and dmgSLim to zero if reloading strength
damage is not required

dmgE
dmgFE|
(float

[N

dmgE
dmgE
(float

3floating point elastic stiffness damage factors al,a2,a3,a4 shown in Eq. 1
4

dmgE
(float

Lfloating point elastic stiffness damage limit Dlim shown in Eq. 1; Note: This value must be between
zero and unity

dmgR|
dmgR|

1
2

dmgR|
dmgR|
(float

3floating point reloading stiffness damage factors a1,a2,a3,a4 shown in Eq. 1
4

dmgR
(float

Lfloating point reloading stiffness damage limit Dlim shown in Eq. 1; Note: This value must be
between zero and unity

122

dmgR
(float

Cileating point cyclic reloading stiffness damage index; Nofe: This value must b&Rgt&%ei;HzelR Lﬁ?l% p
unity ’

dmgs
dmgs

1
2

Ama <

2foatino noint hackhone otrenoth damaoce factore 1 A2 A2 4 hown in Fa 1

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

uniaxialMaterial (’PinchingLimitStateMaterial’, matTag, dnodeT, nodeB, driftAxis, Kelas, crvTyp, crv-

Tag, eleTag, b, d, h, a, st, As, Acc, ld, db, rhot, fc, fy, fyt)
MODE 2: Calibrated Model for Shear-Critical Concrete Columns

1.4. Model Commands 123

OpenSeesPy Documentation, Release 1.0.0b1

mat7]

(int)

[dnteger tag identifying material

nodsg

(int)

»Tnteger node tag to define the first node at the extreme end of the associated flexural frame member
(L3 or D5 in Figure)

nodsg

(int)

»Hnteger node tag to define the last node at the extreme end of the associated flexural frame member
(L2 or D2 in Figure)

drif
(int)

FtAteger to indicate the drift axis in which lateral-strength degradation will occur. This axis should be
orthogonal to the axis of measured rotation (see rotAxis" in Rotation Shear Curve definition)
driftAxis =1 - Drift along the x-axis driftAxis =2 — Drift along the y-axis driftAxis =3
— Drift along the z-axis

Kelg
(float]

1 floating point value to define the shear stiffness (Kelastic) of the shear spring prior to shear failure
Kelas = -4 — Shear stiffness calculated assuming double curvature and shear springs at both column
element ends

Kelas = -3 — Shear stiffness calculated assuming double curvature and a shear spring at one column
element end

Kelas = -2 — Shear stiffness calculated assuming single curvature and shear springs at both column
element ends

Kelas = -1 — Shear stiffness calculated assuming single curvature and a shear spring at one column
element end

Kelas > 0 — Shear stiffness is the input value

Note: integer inputs allow the model to know whether column height equals the shear span (cantelever)
or twice the shear span (double curvature). For columns in frames, input the value for the case that
best approximates column end conditions or manually input shear stiffness (typically double curvature
better estimates framed column behavior)

crvTdnteger tag for the unique limit curve object associated with this material

(int)

eleTdugteger element tag to define the associated beam-column element used to extract axial load
(int)

b floating point column width (inches)

(float

d floating point column depth (inches)

(float]

h floating point column height (inches)

(floaf]

a floating point shear span length (inches)

(float

st | floating point transverse reinforcement spacing (inches) along column height

(float]

As | floating point total area (inches squared) of longitudinal steel bars in section

(floaf]

Acc | floating point gross confined concrete area (inches squared) bounded by the transverse reinforcement

(float)) in column section

1d

(float)) 12-2

floating point development length (inches) of longitudinal bars using ACI 318-11 Eq. 12-1 and Egq.

db

(float]

floating point diameter (inches) of longitudinal bars in column section

rhot floating point transverse reinforcement ratio (Ast/st.db)
(floaf]

f'c

(float

floating point concrete compressive strength (ksi)

fy

(floa]

floating point longitudinal steel yield strength (ksi)

fyt

(floaf]

floating point transverse steel yield strength (ksi)

124

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

See also:

Notes

CFSWSWP Wood-Sheathed Cold-Formed Steel Shear Wall Panel

uniaxialMaterial ('CFSWSWP’, matlag, height, width, fut, tf, Ife, Ifi, ts, np, ds, Vs, sc, nc, type,
openingArea, openingLength)
This command is used to construct a uniaxialMaterial model that simulates the hysteresis response (Shear
strength-Lateral displacement) of a wood-sheathed cold-formed steel shear wall panel (CFS-SWP). The hystere-
sis model has smooth curves and takes into account the strength and stiffness degradation, as well as pinching

effect.

This uniaxialMaterial gives results in Newton and Meter units, for strength and displacement, respectively.

matTag (int)

integer tag identifying material

height (float)

SWP’s height (mm)

width (float)

SWP’s width (mm)

fuf (float)

Tensile strength of framing members (MPa)

t £ (float)

Framing thickness (mm)

Ife (float)

Moment of inertia of the double end-stud (mm4)

Ifi (float)

Moment of inertia of the intermediate stud (mm4)

ts (float) Sheathing thickness (mm)

np (float) Sheathing number (one or two sides sheathed)

ds (float) Screws diameter (mm)

Vs (float) Screws shear strength (N)

sc (float) Screw spacing on the SWP perimeter (mm)

nc (float) Total number of screws located on the SWP perimeter

type (int) Integer identifier used to define wood sheathing type (DFP=1, OSB=2, CSP=3)

openingArea (float)

Total area of openings (mm?)

openingLength (float)

Cumulative length of openings (mm)

See also:

Notes

CFSSSWP Steel-Sheathed Cold-formed Steel Shear Wall Panel

uniaxialMaterial ('CFSSSWP’, matTag, height, width, fuf, if, tf, Af, fus, fvs, ts, np, ds, Vs, sc, dt,
openingArea, openingLength)
This command is used to construct a uniaxialMaterial model that simulates the hysteresis response (Shear
strength-lateral Displacement) of a Steel-Sheathed Cold-Formed Steel Shear Wall Panel (CFS-SWP). The hys-
teresis model has smooth curves and takes into account the strength and stiffness degradation, as well as pinching

effect.

This uniaxialMaterial gives results in Newton and Meter units, for strength and displacement, respectively.

1.4. Model Commands

125

http://opensees.berkeley.edu/wiki/index.php/Pinching_Limit_State_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/CFSWSWP

OpenSeesPy Documentation, Release 1.0.0b1

See also:

Notes

matTag (int)

integer tag identifying material

height (float)

SWP’s height (mm)

width (float)

SWP’s width (mm)

fuf (float) Tensile strength of framing members (MPa)
fyf (float) Yield strength of framing members (MPa)

t £ (float) Framing thickness (mm)

Af (float) Framing cross section area (mm?)

fus (float) Tensile strength of steel sheet sheathing (MPa)
fys (float) Yield strength of steel sheet sheathing (MPa)
t s (float) Sheathing thickness (mm)

np (float) Sheathing number (one or two sides sheathed)
ds (float) Screws diameter (mm)

Vs (float) Screws shear strength (N)

sc (float) Screw spacing on the SWP perimeter (mm)
dt (float) Anchor bolt’s diameter (mm)

openingArea (float)

Total area of openings (mm?)

openingLength (float)

Cumulative length of openings (mm)

1.4.14 nDMaterial commands

nDMaterial (matType, matTag, *matArgs)

This command is used to construct an NDMaterial object which represents the stress-strain relationship at the

gauss-point of a continuum element.

For example,

matType (str)

material type

matTag (int)

material tag.

matArgs (list) | alist of material arguments, must be preceded with *.

matType = 'ElasticIsotropic'

matTag = 1

matArgs =

nDMaterial (matType, matTag, *matArgs)

The following contain information about available mat Type:

Elasticlsotropic

nDMaterial (’Elasticlsotropic’, matlag, E, v, rho=0.0)
This command is used to construct an ElasticIsotropic material object.

matTag (int) | integer tag identifying material
E (float) elastic modulus

v (float) Poisson’s ratio

rho (float) mass density (optional)

126

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/CFSSSWP
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

The material formulations for the ElasticIsotropic object are:
* 'ThreeDimensional'’
* 'PlaneStrain'
e 'Plane Stress'
e 'AxiSymmetric'

e 'PlateFiber’

ElasticOrthotropic

nDMaterial (’ElasticOrthotropic’, matTag, Ex, Ey, Ez, vxy, vyz, vzx, Gxy, Gyz, Gzx, rho=0.0)
This command is used to construct an ElasticOrthotropic material object.

matTag (int) | integer tag identifying material
Ex (float) elastic modulus in x direction
Ey (float) elastic modulus in y direction
Ez (float) elastic modulus in z direction
vxy (float) Poisson’s ratios in x and y plane
vyz (float) Poisson’s ratios in y and z plane
vzx (float) Poisson’s ratios in z and x plane
Gxy (float) shear modulii in x and y plane
Gyz (float) shear modulii in y and z plane
Gzx (float) shear modulii in z and x plane
rho (float) mass density (optional)

The material formulations for the ElasticOrthotropic object are:
* 'ThreeDimensional'
e 'PlaneStrain’
e 'Plane Stress'
e '"AxiSymmetric'
* 'BeamFiber'

e 'PlateFiber’
J2Plasticity
nDMaterial ('J2Plasticity’, matTag, K, G, sig0, siglnf, delta, H)

This command is used to construct an multi dimensional material object that has a von Mises (J2) yield criterium
and isotropic hardening.

matTag (int) integer tag identifying material
K (float) bulk modulus

G (float) shear modulus

sig0 (float) initial yield stress

sigInf (float) | final saturation yield stress
delta (float) exponential hardening parameter
H (float) linear hardening parameter

1.4. Model Commands 127

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

The material formulations for the J2Plasticity object are:

* 'ThreeDimensional'’

* 'PlaneStrain'

e 'Plane Stress'

e 'AxiSymmetric'

* 'PlateFiber’
J2 isotropic hardening material class
Elastic Model

o= K xtrace(e.) + (2% G) x dev(e)
Yield Function
9(0,q) = |ldev(@)]| — /(% * ()

Saturation Isotropic Hardening with linear term

q(z;) = 00 + (000 — 09) * cxp(—delta x £) + H x £

Flow Rules
€p =7 * %
£=—yx %Z)
Linear Viscosity
1= 206> 0)

Backward Euler Integration Routine Yield condition enforced at time n+1

set 7 = 0 for rate independent case

DrukerPrager

nDMaterial (’'DrukerPrager’, matlag, K, G, sigmaY, rho, rhoBar, Kinf, Ko, deltal, delta2, H, theta, density,

) atmPressure=101e3) o)))))
This command is used to construct an multi dimensional material object that has a Drucker-Prager yield cri-

terium.
matTag (int) integer tag identifying material
K (float) bulk modulus
G (float) shear modulus
sigmaY (float) yield stress
rho (float) frictional strength parameter
rhoBar (float) controls evolution of plastic volume change, 0 < rhoBar < rho.
Kinf (float) nonlinear isotropic strain hardening parameter, Kinf > 0.
Ko (float) nonlinear isotropic strain hardening parameter, Ko > 0.
deltal (float) nonlinear isotropic strain hardening parameter, deltal > 0.
delta?2 (float) tension softening parameter, delta2 > 0.
H (float) linear hardening parameter, H > 0.
theta (float) controls relative proportions of isotropic and kinematic hardening, 0 < theta < 1.
density (float) mass density of the material
atmPressure (float) | optional atmospheric pressure for update of elastic bulk and shear moduli

128 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

The material formulations for the DrukerPrager object are:
* 'ThreeDimensional'’
* 'PlaneStrain'

See theory.

Damage2p

nDMaterial (’'Damage2p’, matlag, fcc, -fct’, fct, -E’, E, ’-ni’, ni, ’-Gt’, Gt, ’-Gc’, Gc, ’-rho_bar’, rho_bar,
-H’, H, ’-theta’, theta, ’-tangent’, tangent)
This command is used to construct a three-dimensional material object that has a Drucker-Prager plasticity
model coupled with a two-parameter damage model.

matTagq integer tag identifying material

(int)

fcc concrete compressive strength, negative real value (positive input is changed in sign automatically)

(float)

fct optional concrete tensile strength, positive real value (for concrete like materials is less than fcc),

(float) | 0.1 % abs(fec) = 4750 * sqrt(abs(fece)) if abs(fec) < 2000 because fec is assumed in MPa (see
ACI 318)

E optional Young modulus, 57000 * sqrt(abs(fcc)) if abs(fcc) > 2000 because fcc is assumed in

(float) | psi (see ACI 318)

ni optional Poisson coefficient, 0.15 (from comparison with tests by Kupfer Hilsdorf Rusch 1969)

(float)

Gt optional tension fracture energy density, positive real value (integral of the stress-strain envelope

(float) | in tension), 1840 x fct * fct/E (from comparison with tests by Gopalaratnam and Shah 1985)

Gc optional compression fracture energy density, positive real value (integral of the stress-strain enve-

(float) | lope after the peak in compression), :math:6250*fcc*fcc/E* (from comparison with tests by Karsan
and Jirsa 1969)

rho_bamwptional parameter of plastic volume change, positive real value 0 = rhoBar < sqrt(2/3), 0.2
(float) | (from comparison with tests by Kupfer Hilsdorf Rusch 1969)

H optional linear hardening parameter for plasticity, positive real value (usually less than E), 0.25 x I/
(float) | (from comparison with tests by Karsan and Jirsa 1969 and Gopalaratnam and Shah 1985)

theta | optional ratio between isotropic and kinematic hardening, positive real value 0 = theta = 1 (with:
(float) | O hardening kinematic only and 1 hardening isotropic only, 0.5 (from comparison with tests by
Karsan and Jirsa 1969 and Gopalaratnam and Shah 1985)

tangentoptional integer to choose the computational stiffness matrix, O: computational tangent; 1: dam-
(float) | aged secant stiffness (hint: in case of strong nonlinearities use it with Krylov-Newton algorithm)

The material formulations for the Damage2p object are:
¢ 'ThreeDimensional'
* 'PlaneStrain’
* 'Plane Stress'
e 'AxiSymmetric'
e 'PlateFiber’

See also here

1.4. Model Commands 129

http://opensees.berkeley.edu/wiki/index.php/Drucker_Prager
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Damage2p

OpenSeesPy Documentation, Release 1.0.0b1

PlaneStress

nDMaterial (’PlaneStress’, matlag, threeDtag)
This command is used to construct a plane-stress material wrapper which converts any three-dimensional mate-
rial into a plane stress material via static condensation.

matTag (int) integer tag identifying material
threeDtag (int) | tag of perviously defined 3d ndMaterial material

The material formulations for the PlaneStress object are:

* 'Plane Stress'
PlaneStrain
nDMaterial (’PlaneStrain’, matlag, threeDtag)

This command is used to construct a plane-stress material wrapper which converts any three-dimensional mate-
rial into a plane strain material by imposing plain strain conditions on the three-dimensional material.

matTag (int) integer tag identifying material
threeDtag (int) | integer tag of previously defined 3d ndMaterial material

The material formulations for the PlaneStrain object are:
* 'PlaneStrain'
MultiaxialCyclicPlasticity

nDMaterial ('MultiaxialCyclicPlasticity’, matTag, rho, K, G, Su, Ho, h, m, beta, KCoeff)
This command is used to construct an multiaxial Cyclic Plasticity model for clays

matTag (int) integer tag identifying material

rho (float) density

K (float) buck modulus

G (float) maximum (small strain) shear modulus

Su (float) undrained shear strength, size of bounding surface R = \/% * Su
Ho (float) linear kinematic hardening modulus of bounding surface

h (float) hardening parameter

m (float) hardening parameter

beta (float) integration parameter, usually beta=0.5

KCoeff (float) | coefficient of earth pressure, KO

BoundingCamcClay

nDMaterial ('BoundingCamClay’, matTag, massDensity, C, bulkMod, OCR, mu_o, alpha, lambda, h, m)
This command is used to construct a multi-dimensional bounding surface Cam Clay material object after Borja
et al. (2001).

130 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

matTag (int) integer tag identifying material

massDensity mass density

(float)

C (float) ellipsoidal axis ratio (defines shape of ellipsoidal loading/bounding surfaces)

bulkMod (float) | initial bulk modulus

OCR (float) overconsolidation ratio

mu_o (float) initial shear modulus

alpha (float) pressure-dependency parameter for modulii (greater than or equal to zero)

lambda (float) soil compressibility index for virgin loading

h (float) hardening parameter for plastic response inside of bounding surface (if h = 0, no hard-
ening)

m (float) hardening parameter (exponent) for plastic response inside of bounding surface (if m =
0, only linear hardening)

The material formulations for the BoundingCamClay object are:
¢ 'ThreeDimensional'
* 'PlaneStrain’

See also for information

PlateFiber

nDMaterial (’PlateFiber’, matTag, threeDTag)
This command is used to construct a plate-fiber material wrapper which converts any three-dimensional material
into a plate fiber material (by static condensation) appropriate for shell analysis.

matTag (int) integer tag identifying material
threeDTag (float) | material tag for a previously-defined three-dimensional material

FSAM

nDMaterial ('FSAM’, matTag, rho, sX, sY, conc, rouX, rouY, nu, alfadow)

This command is used to construct a nDMaterial FSAM (Fixed-Strut-Angle-Model, Figure 1, Kolozvari et
al., 2015), which is a plane-stress constitutive model for simulating the behavior of RC panel elements under
generalized, in-plane, reversed-cyclic loading conditions (Ulugtekin, 2010; Orakcal et al., 2012). In the FSAM
constitutive model, the strain fields acting on concrete and reinforcing steel components of a RC panel are
assumed to be equal to each other, implying perfect bond assumption between concrete and reinforcing steel
bars. While the reinforcing steel bars develop uniaxial stresses under strains in their longitudinal direction, the
behavior of concrete is defined using stress—strain relationships in biaxial directions, the orientation of which
is governed by the state of cracking in concrete. Although the concrete stress—strain relationship used in the
FSAM is fundamentally uniaxial in nature, it also incorporates biaxial softening effects including compression
softening and biaxial damage. For transfer of shear stresses across the cracks, a friction-based elasto-plastic
shear aggregate interlock model is adopted, together with a linear elastic model for representing dowel action
on the reinforcing steel bars (Kolozvari, 2013). Note that FSAM constitutive model is implemented to be used
with Shear-Flexure Interaction model for RC walls (SFI_MVLEM), but it could be also used elsewhere.

1.4. Model Commands 131

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Bounding_Cam_Clay
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

matTag (int)

integer tag identifying material

rho (float)

Material density

sX (float)

Tag of uniaxialMaterial simulating horizontal (x) reinforcement

sY (float)

Tag of uniaxialMaterial simulating vertical (y) reinforcement

conc (float)

Tag of uniaxialMaterial simulating concrete, shall be used with uniaxialMaterial Con-
creteCM

rouX (float)

Reinforcing ratio in horizontal (x) direction (rouX =g, /Agross,:v)

rouY (float)

Reinforcing ratio in vertical (x) direction (rouY =, /Agross,y)

nu (float) Concrete friction coefficient (0.0 < v < 1.5)
alfadow Stiffness coefficient of reinforcement dowel action (0.0 < al fadow < 0.05)
(float)

See also here

References:

1. Kolozvari K., Orakcal K., and Wallace J. W. (2015). “Shear-Flexure Interaction Modeling of reinforced Con-
crete Structural Walls and Columns under Reversed Cyclic Loading”, Pacific Earthquake Engineering Research
Center, University of California, Berkeley, PEER Report No. 2015/12

2. Kolozvari K. (2013). “Analytical Modeling of Cyclic Shear-Flexure Interaction in Reinforced Concrete Struc-
tural Walls”, PhD Dissertation, University of California, Los Angeles.

3. Orakcal K., Massone L.M., and Ulugtekin D. (2012). “Constitutive Modeling of Reinforced Concrete Panel
Behavior under Cyclic Loading”, Proceedings, 15th World Conference on Earthquake Engineering, Lisbon,

Portugal.

4. Ulugtekin D. (2010). “Analytical Modeling of Reinforced Concrete Panel Elements under Reversed Cyclic
Loadings”, M.S. Thesis, Bogazici University, Istanbul, Turkey.

ManzariDafalias

nDMaterial ('ManzariDafalias’, matTag, GO, nu, e_init, Mc, c, lambda_c, €0, ksi, P_atm, m, h0, ch, nb, A0,

nd, z_max, cz, Den)
This command is used to construct a multi-dimensional Manzari-Dafalias(2004) material.

132

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/FSAM_-_2D_RC_Panel_Constitutive_Behavior

OpenSeesPy Documentation, Release 1.0.0b1

matTag (int) integer tag identifying material

GO (float) shear modulus constant

nu (float) poisson ratio

e_init (float) initial void ratio

Mc (float) critical state stress ratio

c (float) ratio of critical state stress ratio in extension and compression
lambda_c (float) | critical state line constant

e0 (float) critical void ratio at p=0

ksi (float) critical state line constant

P_atm (float) atmospheric pressure

m (float) yield surface constant (radius of yield surface in stress ratio space)
h0 (float) constant parameter

ch (float) constant parameter

nb (float) bounding surface parameter, nb > 0

A0 (float) dilatancy parameter

nd (float) dilatancy surface parameter nd > 0

z_max (float) fabric-dilatancy tensor parameter

cz (float) fabric-dilatancy tensor parameter

Den (float) mass density of the material

The material formulations for the ManzariDafalias object are:
* 'ThreeDimensional'
* 'PlaneStrain’

See also here

References

Dafalias YF, Manzari MT. “Simple plasticity sand model accounting for fabric change effects”. Journal of Engineering

Mechanics 2004

PM4Sand

nDMaterial ('’PM4Sand’, matTag, Dr, GO, hpo, Den, patm, h0, emax, emin, nb, nd, Ado, zmax, cz, ce, phic,
nu, cgd, cdr, ckaf, Q, R, m, Fsed_min, p_sedo)
This command is used to construct a 2-dimensional PM4Sand material.

1.4. Model Commands

133

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/Manzari_Dafalias_Material

OpenSeesPy Documentation, Release 1.0.0b1

matTag (int)

integer tag identifying material

Dr (float)

Relative density, in fraction

GO (float)

Shear modulus constant

hpo (float)

Contraction rate parameter

Den (float)

Mass density of the material

P_atm Optional, Atmospheric pressure
(float)
hO0 (float) Optional, Variable that adjusts the ratio of plastic modulus to elastic modulus

emax (float)

Optional, Maximum and minimum void ratios

emin (float)

Optional, Maximum and minimum void ratios

nb (float)

Optional, Bounding surface parameter, nb > 0

nd (float)

Optional, Dilatancy surface parameter nd > 0

Ado (float)

Optional, Dilatancy parameter, will be computed at the time of initialization if input value
is negative

Z_max Optional, Fabric-dilatancy tensor parameter

(float)

cz (float) Optional, Fabric-dilatancy tensor parameter

ce (float) Optional, Variable that adjusts the rate of strain accumulation in cyclic loading
phic (float) | Optional, Critical state effective friction angle

nu (float) Optional, Poisson’s ratio

cgd (float)

Optional, Variable that adjusts degradation of elastic modulus with accumulation of fabric

cdr (float)

Optional, Variable that controls the rotated dilatancy surface

ckaf (float)

Optional, Variable that controls the effect that sustained static shear stresses have on plastic
modulus

Q (float) Optional, Critical state line parameter

R (float) Optional, Critical state line parameter

m (float) Optional, Yield surface constant (radius of yield surface in stress ratio space)

Fsed_min Optional, Variable that controls the minimum value the reduction factor of the elastic moduli
(float) can get during reconsolidation

p_sedo Optional, Mean effective stress up to which reconsolidation strains are enhanced

(float)

The material formulations for the PM4Sand object are:
e 'PlaneStrain'

See als here

References

R.W.Boulanger, K.Ziotopoulou. “PM4Sand(Version 3.1): A Sand Plasticity Model for Earthquake Engineering Ap-
plications”. Report No. UCD/CGM-17/01 2017

StressDensityModel

nDMaterial (’StressDensityModel’, matTag, mDen, eNot, A, n, nu, al, bl, a2, b2, a3, b3, fd, muNot, muCyc,
sc, M, patm, ssll, ssl2, ssl3, ssl4, ssl5, ssl6, ssl7, ssi8, ssl9, ssl10, hsl, pl, p2, p3, p4, p5, p6, p7,

P8, pY, pl0)
This command is used to construct a multi-dimensional stress density material object for modeling sand be-

haviour following the work of Cubrinovski and Ishihara (1998a,b).

matTag (int) \ integer tag identifying material ‘
Continued on next page

134 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/PM4Sand_Material
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

Table 1 — continued from previous page

mDen (float)

mass density

eNot (float)

initial void ratio

A (float) constant for elastic shear modulus

n (float) pressure dependency exponent for elastic shear modulus
nu (float) Poisson’s ratio

al (float) peak stress ratio coefficient (etaMax = al + bl * Is)
b1 (float) peak stress ratio coefficient (etaMax = al + bl * Is)
a2 (float) max shear modulus coefficient (Gn,,ax = a2 + b2 * Is)
b2 (float) max shear modulus coefficient (Gn,,ax = a2 + b2 x Is)
a3 (float) min shear modulus coefficient (Gn,,in = a3 + b3 x Is)
b3 (float) min shear modulus coefficient (Gn,,in = a3 + b3 * Is)
f£d (float) degradation constant

muNot (float)

dilatancy coefficient (monotonic loading)

muCyc (float)

dilatancy coefficient (cyclic loading)

sc (float)

dilatancy strain

M (float) critical state stress ratio

patm (float) atmospheric pressure (in appropriate units)

ss11 (float) void ratio of quasi steady state (QSS-line) at pressure p1 (default = 0.877)
ss12 (float) void ratio of quasi steady state (QSS-line) at pressure p2 (default = 0.877)
ss13 (float) void ratio of quasi steady state (QSS-line) at pressure p3 (default = 0.873)
ss14 (float) void ratio of quasi steady state (QSS-line) at pressure p4 (default = 0.870)
ss15 (float) void ratio of quasi steady state (QSS-line) at pressure p5 (default = 0.860)
ss16 (float) void ratio of quasi steady state (QSS-line) at pressure p6 (default = 0.850)
ss17 (float) void ratio of quasi steady state (QSS-line) at pressure p7 (default = 0.833)
ss18 (float) void ratio of quasi steady state (QSS-line) at pressure p8 (default = 0.833)
ss19 (float) void ratio of quasi steady state (QSS-line) at pressure p9 (default = 0.833)
ss110 (float) | void ratio of quasi steady state (QSS-line) at pressure p10 (default = 0.833)

hs1 (float) void ratio of upper reference state (UR-line) for all pressures (default = 0.895)
pl (float) pressure corresponding to ssll (default = 1.0 kPa)

p2 (float) pressure corresponding to ssl1 (default = 10.0 kPa)

p3 (float) pressure corresponding to ssl1 (default = 30.0 kPa)

p4 (float) pressure corresponding to ssll (default = 50.0 kPa)

p5 (float) pressure corresponding to ssl1 (default = 100.0 kPa)

p6 (float) pressure corresponding to ssl1 (default = 200.0 kPa)

p7 (float) pressure corresponding to ssl1 (default = 400.0 kPa)

p8 (float) pressure corresponding to ssl1 (default = 400.0 kPa)

p9 (float) pressure corresponding to ssl1 (default = 400.0 kPa)

p10 (float) pressure corresponding to ssl1 (default = 400.0 kPa)

The material formulations for the StressDensityModel object are:
* 'ThreeDimensional'
* 'PlaneStrain’

References

Cubrinovski, M. and Ishihara K. (1998a) ‘Modelling of sand behaviour based on state concept,” Soils and Foundations,
38(3), 115-127.

Cubrinovski, M. and Ishihara K. (1998b) ‘State concept and modified elastoplasticity for sand modelling,” Soils and
Foundations, 38(4), 213-225.

Das, S. (2014) Three Dimensional Formulation for the Stress-Strain-Dilatancy Elasto-Plastic Constitutive Model for
Sand Under Cyclic Behaviour, Master’s Thesis, University of Canterbury.

1.4. Model Commands 135

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

AcousticMedium

nDMaterial (’AcousticMedium’, matTag, K, rho)
This command is used to construct an acoustic medium NDMaterial object.

CycLiqCP

matTag (int) | integer tag identifying material

K (float) bulk module of the acoustic medium

rho (float) mass density of the acoustic medium

nDMaterial ('CycLigCP’, matTag, GO, kappa, h, Mfc, drel, Mdc, dre2, rdr, alpha, dir, ein, rho)

This command is used to construct a multi-dimensional material object that that follows the constitutive behavior

of a cyclic elastoplasticity model for large post- liquefaction deformation.

CycLiqCP material is a cyclic elastoplasticity model for large post-liquefaction deformation, and is implemented
using a cutting plane algorithm. The model is capable of reproducing small to large deformation in the pre- to
post-liquefaction regime. The elastic moduli of the model are pressure dependent. The plasticity in the model
is developed within the framework of bounding surface plasticity, with special consideration to the formulation

of reversible and irreversible dilatancy.

The model does not take into consideration of the state of sand, and requires different parameters for sand under
different densities and confining pressures. The surfaces (i.e. failure and maximum pre-stress) are considered as

circles in the pi plane.

The model has been validated against VELACS centrifuge model tests and has used on numerous simulations of

liquefaction related problems.

When this material is employed in regular solid elements (e.g., FourNodeQuad, Brick), it simulates drained soil
response. When solid-fluid coupled elements (u-p elements and SSP u-p elements) are used, the model is able to

simulate undrained and partially drained behavior of soil.

matTag (int)

integer tag identifying material

GO (float) A constant related to elastic shear modulus

kappa (float) | bulk modulus

h (float) Model parameter for plastic modulus

Mfc (float) Stress ratio at failure in triaxial compression

drel (float) Coefficient for reversible dilatancy generation

Mdc (float) Stress ratio at which the reversible dilatancy sign changes
dre2 (float) Coefficient for reversible dilatancy release

rdr (float) Reference shear strain length

alpha (float)

Parameter controlling the decrease rate of irreversible dilatancy

dir (float)

Coefficient for irreversible dilatancy potential

ein (float)

Initial void ratio

rho (float)

Saturated mass density

The material formulations for the CycLiqCP object are:

e 'ThreeDimensional'

e 'PlaneStrain'’

See also here

136

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/CycLiqCP_Material_(Cyclic_ElasticPlasticity)

OpenSeesPy Documentation, Release 1.0.0b1

CycLiqCPSP

nDMaterial ('CycLigCPSP’, matlag, GO, kappa, h, M, drel, dre2, rdr, alpha, dir, lambdac, ksi, 0, np, nd,

ein, rho)

This command is used to construct a multi-dimensional material object that that follows the constitutive behavior
of a cyclic elastoplasticity model for large post- liquefaction deformation.

CycLiqCPSP material is a constitutive model for sand with special considerations for cyclic behaviour and
accumulation of large post-liquefaction shear deformation, and is implemented using a cutting plane algorithm.
The model: (1) achieves the simulation of post-liquefaction shear deformation based on its physics, allowing the
unified description of pre- and post-liquefaction behavior of sand; (2) directly links the cyclic mobility of sand
with reversible and irreversible dilatancy, enabling the unified description of monotonic and cyclic loading; (3)
introduces critical state soil mechanics concepts to achieve unified modelling of sand under different states.

The critical, maximum stress ratio and reversible dilatancy surfaces follow a rounded triangle in the pi plane similar
to the Matsuoka-Nakai criterion.

When this material is employed in regular solid elements (e.g., FourNodeQuad, Brick), it simulates drained soil
response. When solid-fluid coupled elements (u-p elements and SSP u-p elements) are used, the model is able to
simulate undrained and partially drained behavior of soil.

matTag (int)

integer tag identifying material

GO (float) A constant related to elastic shear modulus
kappa (float) bulk modulus

h (float) Model parameter for plastic modulus

M (float) Critical state stress ratio

drel (float)

Coefficient for reversible dilatancy generation

dre2 (float)

Coefficient for reversible dilatancy release

rdr (float)

Reference shear strain length

alpha (float)

Parameter controlling the decrease rate of irreversible dilatancy

dir (float)

Coefficient for irreversible dilatancy potential

lambdac (float)

Critical state constant

ksi (float)

Critical state constant

e0 (float) Void ratio at pc=0

np (float) Material constant for peak mobilized stress ratio

nd (float) Material constant for reversible dilatancy generation stress ratio
ein (float) Initial void ratio

rho (float) Saturated mass density

The material formulations for the CycLiqCP object are:

e 'ThreeDimensional'’

e 'PlaneStrain'

See also here

REFERENCES: Wang R., Zhang J.M., Wang G., 2014. A unified plasticity model for large post-liquefaction shear
deformation of sand. Computers and Geotechnics. 59, 54-66.

PlaneStressUserMaterial

nDMaterial (’PlaneStressUserMaterial’, matTag, fc, ft, fcu, epscO, epscu, epstu, stc)
This command is used to create the multi-dimensional concrete material model that is based on the damage
mechanism and smeared crack model.

1.4. Model Commands

137

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/CycLiqCPSP_Material

OpenSeesPy Documentation, Release 1.0.0b1

matTag (int) | integer tag identifying material

fc (float) concrete compressive strength at 28 days (positive)
ft (float) concrete tensile strength (positive)
fcu (float) concrete crushing strength (negative)

epscO (float) | concrete strain at maximum strength (negative)
epscu (float) | concrete strain at crushing strength (negative)
epstu (float) | ultimate tensile strain (positive)

stc (float) shear retention factor

PlateFromPlaneStress

nDMaterial (’PlateFromPlaneStress’, matTag, newmatTag, matTag, OutofPlaneModulus)
This command is used to create the multi-dimensional concrete material model that is based on the damage
mechanism and smeared crack model.

matTag (int) integer tag identifying material
newmatTag (int) new integer tag identifying material deriving from pre-defined PlaneStres-
sUserMaterial
matTag (int) integer tag identifying PlaneStressUserMaterial
OutofPlaneModulus shear modulus of out plane
(float)
PlateRebar

nDMaterial (’PlateRebar’, matTag, newmatTag, matlag, sita)
This command is used to create the multi-dimensional reinforcement material.

matTag (int) integer tag identifying material

newmatTag (int) | new integer tag identifying material deriving from pre-defined uniaxial steel material
matTag (int) integer tag identifying uniaxial steel material

sita (float) define the angle of steel layer, 90 (longitudinal steel), O (tranverse steel)

ContactMaterial2D

nDMaterial (’ContactMaterial2D’, matTag, mu, G, c, t)
This command is used to construct a ContactMaterial2D nDMaterial object.

matTag (int) | integer tag identifying material
mu (float) interface frictional coefficient
G (float) interface stiffness parameter

c (float) interface cohesive intercept

t (float) interface tensile strength

The ContactMaterial2D nDMaterial defines the constitutive behavior of a frictional interface between two bodies in
contact. The interface defined by this material object allows for sticking, frictional slip, and separation between the
two bodies in a two-dimensional analysis. A regularized Coulomb frictional law is assumed. Information on the theory
behind this material can be found in, e.g. Wriggers (2002).

138 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

Note:

1. The ContactMaterial2D nDMaterial has been written to work with the SimpleContact2D and BeamContact2D
element objects.

2. There are no valid recorder queries for this material other than those which are listed with those elements

References:
Wriggers, P. (2002). Computational Contact Mechanics. John Wilely & Sons, Ltd, West Sussex, England.
ContactMaterial3D

nDMaterial (’ContactMaterial3D’, matTag, mu, G, c, t)
This command is used to construct a ContactMaterial3D nDMaterial object.

matTag (int) | integer tag identifying material
mu (float) interface frictional coefficient
G (float) interface stiffness parameter

c (float) interface cohesive intercept

t (float) interface tensile strength

The ContactMaterial3D nDMaterial defines the constitutive behavior of a frictional interface between two bodies in
contact. The interface defined by this material object allows for sticking, frictional slip, and separation between the
two bodies in a three-dimensional analysis. A regularized Coulomb frictional law is assumed. Information on the
theory behind this material can be found in, e.g. Wriggers (2002).

Note:

1. The ContactMaterial3D nDMaterial has been written to work with the SimpleContact3D and BeamContact3D
element objects.

2. There are no valid recorder queries for this material other than those which are listed with those elements.

References:

Wriggers, P. (2002). Computational Contact Mechanics. John Wilely & Sons, Ltd, West Sussex, England.

InitialStateAnalysisWrapper

nDMaterial (’InitialStateAnalysisWrapper’, matTag, nDMatTag, nDim)
The InitialState AnalysisWrapper nDMaterial allows for the use of the InitialState Analysis command for setting
initial conditions. The InitialStateAnalysisWrapper can be used with any nDMaterial. This material wrapper
allows for the development of an initial stress field while maintaining the original geometry of the problem. An
example analysis is provided below to demonstrate the use of this material wrapper object.

matTag (int) integer tag identifying material
nDMatTag (int) | the tag of the associated nDMaterial object
nDim (int) number of dimensions (2 for 2D, 3 for 3D)

Note:

1.4. Model Commands 139

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

. There are no valid recorder queries for the InitialStateAnalysisWrapper.

The InitialStateAnalysis off command removes all previously defined recorders. Two sets of recorders are
needed if the results before and after this command are desired. See the example below for more.

The InitialState AnalysisWrapper material is somewhat tricky to use in dynamic analysis. Sometimes setting
the displacement to zero appears to be interpreted as an initial displacement in subsequent steps, resulting in
undesirable vibrations.

PressurelndependMultiYield

nDMaterial (’PressurelndependMultiYield’, matTag, nd, rho, refShearModul, refBulkModul, cohesi, peaksS-

hearStra, frictionAng=0., refPress=100., pressDependCoe=0., noYieldSurf=20, *yieldSurf)
PressureIndependMultiYield material is an elastic-plastic material in which plasticity exhibits only in the de-

viatoric stress-strain response. The volumetric stress-strain response is linear-elastic and is independent of the
deviatoric response. This material is implemented to simulate monotonic or cyclic response of materials whose
shear behavior is insensitive to the confinement change. Such materials include, for example, organic soils or

clay under fast (undrained) loading conditions.
matTag| integer tag identifying material
(int)
nd Number of dimensions, 2 for plane-strain, and 3 for 3D analysis.
(float)
rho Saturated soil mass density.
(float)
refSheaxflepyRéference low-strain shear modulus, specified at a reference mean effective confining pres-
(float) sure refPress of p’r (see below).
refBulkNBduReference bulk modulus, specified at a reference mean effective confining pressure refPress
(float) of p’r (see below).
cohesi| (c) Apparent cohesion at zero effective confinement.
(float)
peakShednsinaAn octahedral shear strain at which the maximum shear strength is reached, specified at a
(float) reference mean effective confining pressure refPress of p’r (see below).
frictip@mg Friction angle at peak shear strength in degrees, optional (default is 0.0).
(float)
refPres$p)) Reference mean effective confining pressure at which G, By, and 7, are defined, optional
(float) (default is 100. kPa).
pressDepdnAGmsitive constant defining variations of G and B as a function of instantaneous effective
(float) confinement p’ (default is 0.0)
G =G (E)
B = B,(,%l)d
If ¢ =0, d is reset to 0.0.
noYieldNumiber of yield surfaces, optional (must be less than 40, default is 20). The surfaces are generated
(float) based on the hyperbolic relation defined in Note 2 below.
yieldSnuifstead of automatic surfaces generation (Note 2), you can define yield surfaces directly based
(list on desired shear modulus reduction curve. To do so, add a minus sign in front of noYieldSurf,
(float)) | then provide noYieldSurf pairs of shear strain (r) and modulus ratio (Gs) values. For example, to

define 10 surfaces: yieldSurf = [r1, Gsl, ..., r10, Gs10]

See also notes

140

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/PressureIndependMultiYield_Material

OpenSeesPy Documentation, Release 1.0.0b1

PressureDependMultiYield

nDMaterial (’PressureDependMultiYield’, matTag, nd, rho, refShearModul, refBulkModul, frictionAng,
peakShearStra, refPress, pressDependCoe, PTAng, contrac, *dilat, *liquefac, noYield-
Surf=20.0, *yieldSurf=[], e=0.6, *params=[0.9, 0.02, 0.7, 101.0], c=0.3)
PressureDependMultiYield material is an elastic-plastic material for simulating the essential response character-
istics of pressure sensitive soil materials under general loading conditions. Such characteristics include dilatancy
(shear-induced volume contraction or dilation) and non-flow liquefaction (cyclic mobility), typically exhibited
in sands or silts during monotonic or cyclic loading.

1.4. Model Commands 141

OpenSeesPy Documentation, Release 1.0.0b1

mat7]

(int)

[dnteger tag identifying material

nd
(float

Number of dimensions, 2 for plane-strain, and 3 for 3D analysis.

rho
(floaf]

Saturated soil mass density.

ref
(floaf]

tH &y Rethrdnce low-strain shear modulus, specified at a reference mean effective confining pressure
refPress of p’r (see below).

refH
(float

su(B Raference bulk modulus, specified at a reference mean effective confining pressure refPress of
p’r (see below).

fri
(floaf]

rt(pbt)Arigtion angle at peak shear strength in degrees, optional (default is 0.0).

peak
(float]

t IhgaxrSAnactahedral shear strain at which the maximum shear strength is reached, specified at a
reference mean effective confining pressure refPress of p’r (see below).

refkl
(floaf]

fp)sReference mean effective confining pressure at which G, By, and 7,4, are defined, optional
(default is 100. kPa).

preg
(float

s (e Aepaditive constant defining variations of G and B as a function of instantaneous effective con-
finement p’ (default is 0.0)
G= Gr(;%)d
B =B.(L)!
If =0, d is reset to 0.0.

PTAqY
(float

1f¢ pr) Phase transformation angle, in degrees.

cont
(float]

% mon-negative constant defining the rate of shear-induced volume decrease (contraction) or pore
pressure buildup. A larger value corresponds to faster contraction rate.

dila
(list
(floaf]

tNon-negative constants defining the rate of shear-induced volume increase (dilation). Larger values
correspond to stronger dilation rate. dilat = [dilatl, dilat2].

)

liqy
(list
(floaf]

hePasameters controlling the mechanism of liquefaction-induced perfectly plastic shear strain accu-
mulation, i.e., cyclic mobility. Set liquefac[0] = 0 to deactivate this mechanism altogether.
)liquefac [0] defines the effective confining pressure (e.g., 10 kPa in SI units or 1.45 psi in English
units) below which the mechanism is in effect. Smaller values should be assigned to denser sands.
Liquefac[1l] defines the maximum amount of perfectly plastic shear strain developed at zero ef-
fective confinement during each loading phase. Smaller values should be assigned to denser sands.
Liquefac[2] defines the maximum amount of biased perfectly plastic shear strain 7, accumulated
at each loading phase under biased shear loading conditions, as v, = liquefac[l] x liguefac|2].
Typically, lique f ac[2] takes a value between 0.0 and 3.0. Smaller values should be assigned to denser
sands. See the references listed at the end of this chapter for more information.

novYj
(floaf]

| Nifiber fof yield surfaces, optional (must be less than 40, default is 20). The surfaces are generated
based on the hyperbolic relation defined in Note 2 below.

yiel
(list
(floaf]

| dastedd of automatic surfaces generation (Note 2), you can define yield surfaces directly based on
desired shear modulus reduction curve. To do so, add a minus sign in front of noYieldSurf, then
)provide noYieldSurf pairs of shear strain (r) and modulus ratio (Gs) values. For example, to define 10
surfaces: yieldSurf = [r1, Gsl1, ..., r10, Gs10]

e
(floaf]

Initial void ratio, optional (default is 0.6).

para
(list
(floaf]

mrarams=[csl, cs2, cs3, pal defining a straight critical-state line ec in e-p’ space.
If ¢s3=0,
Jec = csl-cs2 log(p’/pa)
else (Li and Wang, JGGE, 124(12)),
ec = csl-cs2(p’/pa)cs3
where pa is atmospheric pressure for normalization (typically 101 kPa in SI units, or 14.65 psi in
English units). All four constants are optional

Numerical constant (default value = 0.3 kPa)

142

(float]

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

See also notes

PressureDependMultiYield02

nDMaterial (’PressureDependMultiYield02’, matTag, nd, rho, refShearModul, refBulkModul, frictionAng,
peakShearStra, refPress, pressDependCoe, PTAng, contrac[0], contrac[2], dilat[0], dilat[2],
noYieldSurf=20.0, *yieldSurf=[], contrac[l1]=5.0, dilat[1]=3.0, *liquefac=[1.0,0.0],e=0.6,
*params=[0.9, 0.02, 0.7, 101.0], ¢=0.1)
PressureDependMultiYield02 material is modified from PressureDependMultiYield material, with:

1. additional parameters (contrac[2] and dilat [2]) to account for K, effect,

2. a parameter to account for the influence of previous dilation history on subsequent contraction phase
(contrac[1]),and

3. modified logic related to permanent shear strain accumulation (Liquefac[0] and liquefac[1]).

matTag integer tag identifying material

(int)

contrac [2|] A non-negative constant reflecting K, effect.

(float)

dilat[2] | A non-negative constant reflecting K, effect.

(float)

contrac [1]] A non-negative constant reflecting dilation history on contraction tendency.

(float)

liquefac [[0Damage parameter to define accumulated permanent shear strain as a function of dilation
(float) history. (Redefined and different from PressureDependMultiYield material).

liquefac [[1]Damage parameter to define biased accumulation of permanent shear strain as a function of
(float) load reversal history. (Redefined and different from PressureDependMultiYield material).

c (float) Numerical constant (default value = 0.1 kPa)

See also notes

FluidSolidPorousMaterial

nDMaterial ('FluidSolidPorousMaterial’, matTag, nd, soilMatTag, combinedBulkModul, pa=101.0)
FluidSolidPorousMaterial couples the responses of two phases: fluid and solid. The fluid phase response is only
volumetric and linear elastic. The solid phase can be any NDMaterial. This material is developed to simulate
the response of saturated porous media under fully undrained condition.

matTag integer tag identifying material
(int)
nd (float) Number of dimensions, 2 for plane-strain, and 3 for 3D analysis.

soilMatTad he material number for the solid phase material (previously defined).

(int)
combinBul Klomohided undrained bulk modulus B, relating changes in pore pressure and volumetric strain,
(float) may be approximated by:

BC ~ Bf /TL

where By is the bulk modulus of fluid phase (2.2x106 kPa (or 3.191x105 psi) for water), and
n the initial porosity.

pa (float) Optional atmospheric pressure for normalization (typically 101 kPa in ST units, or 14.65 psi in
English units)

1.4. Model Commands 143

http://opensees.berkeley.edu/wiki/index.php/PressureDependMultiYield_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://opensees.berkeley.edu/wiki/index.php/PressureDependMultiYield02_Material
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

See also notes

1.4.15 section commands

section (secType, secTag, *secArgs)
This command is used to construct a SectionForceDeformation object, hereto referred to as Section, which
represents force-deformation (or resultant stress-strain) relationships at beam-column and plate sample points.

secType (str) | section type
secTag (int) section tag.
secArgs (list) | alist of section arguments, must be preceded with *.

For example,

secType = 'Elastic'
secTag = 1
secArgs = [E, A, Iz]

section (secType, secTag, =*secArgs)

The following contain information about available secType:

Elastic Section

section (’Elastic’, secTag, E, A, Iz, G=0.0, alphaY=0.0)

section (’Elastic’, secTag, E, A, Iz, Iy, G, J, alphaY=0.0, alphaZ=0.0)
This command allows the user to construct an ElasticSection. The inclusion of shear deformations is optional.

secTag (int) unique section tag

E (float) Young’s Modulus

A (float) cross-sectional area of section

Iz (float) second moment of area about the local z-axis

Ty (float) second moment of area about the local y-axis (required for 3D analysis)
G (float) Shear Modulus (optional for 2D analysis, required for 3D analysis)

J (float) torsional moment of inertia of section (required for 3D analysis)
alphay (float) | shear shape factor along the local y-axis (optional)

alpha? (float) | shear shape factor along the local z-axis (optional)

Note: The elastic section can be used in the nonlinear beam column elements, which is useful in the initial stages of
developing a complex model.

Fiber Section

section ('Fiber’, secTag, ’-GJ’, GJ=0.0)
This commnand allows the user to construct a FiberSection object. Each FiberSection object is composed of
Fibers, with each fiber containing a UniaxialMaterial, an area and a location (y,z).

secTag (int) | unique section tag
GJ (float) linear-elastic torsional stiffness assigned to the section (optional)

144 Chapter 1. Author

http://opensees.berkeley.edu/wiki/index.php/FluidSolidPorousMaterial
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

section ('FiberThermal’, secTag, -GJ’, GJ=0.0)
This command create a FiberSectionThermal object.

Note:
1. The commands below should be called after the section command to generate all the fibers in the section.

2. The patch and layer commands can be used to generate multiple fibers in a single command.

Fiber Command

fiber (yloc, zloc, A, matTag)
This command allows the user to construct a single fiber and add it to the enclosing FiberSection or NDFiber-

Section.
yvloc y coordinate of the fiber in the section (local coordinate system)
(float)
zloc z coordinate of the fiber in the section (local coordinate system)
(float)
A (float) cross-sectional area of fiber
matTag | material tag associated with this fiber (UniaxialMaterial tag for a FiberSection and NDMaterial
(int) tag for use in an NDFiberSection).

Patch Command

patch (type, *args)
The patch command is used to generate a number of fibers over a cross-sectional area. Currently there are three
types of cross-section that fibers can be generated: quadrilateral, rectangular and circular.

patch ('quad’, matTag, numSubdivl], numSubdivJK, *crdsl, *crdsJ, *crdsK, *crdsL)
This is the command to generate a quadrilateral shaped patch (the geometry of the patch is defined by four
vertices: I J K L. The coordinates of each of the four vertices is specified in COUNTER CLOCKWISE sequence)

matTag (int) | material tag associated with this fiber (UniaxialMaterial tag for a FiberSection and NDMa-
terial tag for use in an NDFiberSection).

numSubdivIJ number of subdivisions (fibers) in the 1J direction.

(int)

numSubdivJK number of subdivisions (fibers) in the JK direction.

(int)

crdsI (list | y & z-coordinates of vertex I (local coordinate system)

(float))

crdsd (list | y & z-coordinates of vertex J (local coordinate system)

(float))

crdsK (list | y & z-coordinates of vertex K (local coordinate system)

(float))

crdsL (list | y & z-coordinates of vertex L (local coordinate system)

(float))

patch (’rect’, matTag, numSubdivY, numSubdivZ, *crdsl, *crdsJ)
This is the command to generate a rectangular patch. The geometry of the patch is defined by coordinates of

1.4. Model Commands 145

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

vertices: I and J. The first vertex, I, is the bottom-left point and the second vertex, J, is the top-right point, having
as a reference the local y-z plane.

matTag (int)

material tag associated with this fiber (UniaxialMaterial tag for a FiberSection and NDMa-
terial tag for use in an NDFiberSection).

numSubdivY| number of subdivisions (fibers) in local y direction.
(int)

numSubdivZ| number of subdivisions (fibers) in local z direction.
(int)

crdsI (list | y & z-coordinates of vertex I (local coordinate system)
(float))

crdsJd (list
(float))

y & z-coordinates of vertex J (local coordinate system)

patch (circ’, matTag, numSubdivCirc, numSubdivRad, *center, *rad, *ang)

This is the command to generate a circular shaped patch

matTag (int)

material tag associated with this fiber (UniaxialMaterial tag for a FiberSection and ND-
Material tag for use in an NDFiberSection).

numSubdivCiricnumber of subdivisions (fibers) in the circumferential direction (number of wedges)

(int)

numSubdivRad| number of subdivisions (fibers) in the radial direction (number of rings)
(int)

center (list | y & z-coordinates of the center of the circle

(float))

rad (list (float)) | internal & external radius

ang (list (float))

starting & ending-coordinates angles (degrees)

Layer Command

layer (type, *args)

The layer command is used to generate a number of fibers along a line or a circular arc.

layer (’straight’, matTag, numFiber, areaFiber, *start, *end)

This command is used to construct a straight line of fibers

matTag (int) | material tag associated with this fiber (UniaxialMaterial tag for a FiberSection and NDMa-
terial tag for use in an NDFiberSection).

numFiber number of fibers along line

(int)

areaFiber | area of each fiber

(float)

start (list | y & z-coordinates of first fiber in line (local coordinate system)

(float))

end (list | y & z-coordinates of last fiber in line (local coordinate system)

(float))

layer (’circ’, matTag,numFiber,areaFiber, *center,radius, *ang=[0.0,360.0-360/numFiber])
This command is used to construct a line of fibers along a circular arc

146 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

matTag (int) | material tag associated with this fiber (UniaxialMaterial tag for a FiberSection and NDMa-
terial tag for use in an NDFiberSection).

numFiber number of fibers along line

(int)

areaFiber area of each fiber

(float)

center (list | y & z-coordinates of center of circular arc

(float))

radius radius of circlular arc

(float)

ang (list | starting and ending angle (optional)

(float))

NDFiber Section

section ('NDFiber’, secTag)
This commnand allows the user to construct an NDFiberSection object. Each NDFiberSection object is com-
posed of NDFibers, with each fiber containing an NDMaterial, an area and a location (y,z). The NDFiberSection
works for 2D and 3D frame elements and it queries the NDMaterial of each fiber for its axial and shear stresses.
In 2D, stress components 11 and 12 are obtained from each fiber in order to provide stress resultants for axial
force, bending moment, and shear (N, Mz, and Vy). Stress components 11, 12, and 13 lead to all six stress
resultants in 3D (N, Mz, Vy, My, Vz, and T).

The NDFiberSection works with any NDMaterial via wrapper classes that perform static condensation of the
stress vector down to the 11, 12, and 13 components, or via concrete NDMaterial subclasses that implement the
appropriate fiber stress conditions.

secTag (int) | unique section tag

Note:
1. The commands below should be called after the section command to generate all the fibers in the section.

2. The patch and layer commands can be used to generate multiple fibers in a single command.

1. fiber ()
2. patch ()

3. layer()
Wide Flange Section
section ('WFSection2d’, secTag, matlag, d, tw, bf, tf, Nfw, Nff')

This command allows the user to construct a WESection2d object, which is an encapsulated fiber representation
of a wide flange steel section appropriate for plane frame analysis.

1.4. Model Commands 147

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

secTag (int) | unique section tag

matTag (int) | tag of uniaxialMaterial assigned to each fiber
d (float) section depth

tw (float) web thickness

bf (float) flange width

t £ (float) flange thickness

Nfw (float) number of fibers in the web

Nff (float) number of fibers in each flange

Note: The section dimensions d, tw, bf, and t £ can be found in the AISC steel manual.

RC Section

section ('RCSection2d’, secTag, corelag, coverlag, steellag, d, b, cover, Atop, Abot, Aside, Nfcore, Nfcover,
Nfs)
This command allows the user to construct an RCSection2d object, which is an encapsulated fiber representation
of arectangular reinforced concrete section with core and confined regions of concrete and single top and bottom
layers of reinforcement appropriate for plane frame analysis.

secTag (int) | unique section tag

coreTag tag of uniaxialMaterial assigned to each fiber in the core region

(int)

coverTag tag of uniaxialMaterial assigned to each fiber in the cover region

(int)

steelTag tag of uniaxialMaterial assigned to each reinforcing bar

(int)

d (float) section depth

b (float) section width

cover (float) | cover depth (assumed uniform around perimeter)

Atop (float) area of reinforcing bars in top layer

Abot (float) area of reinforcing bars in bottom layer

Aside (float) | area of reinforcing bars on intermediate layers

Nfcore number of fibers through the core depth

(float)

Nfcover number of fibers through the cover depth

(float)

Nfs (float) number of bars on the top and bottom rows of reinforcement (Nfs-2 bars will be placed on
the side rows)

Note: For more general reinforced concrete section definitions, use the Fiber Section command.

Parallel Section

section (’Parallel’, secTag, *tags)
Connect sections in parallel.

148 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

Section Aggregator

secTag (int)

unique section tag

tags (list (int))

tags of of predefined sections.

section (’Aggregator’, secTag, *mats, ’-section’, sectionTag)
This command is used to construct a SectionAggregator object which aggregates groups previously-defined
UniaxialMaterial objects into a single section force-deformation model. Each UniaxialMaterial object represents
the section force-deformation response for a particular section degree-of-freedom (dof). There is no interaction
between responses in different dof directions. The aggregation can include one previously defined section.

secTag (int)

unique section tag

mats (list)

list of tags and dofs of previously-defined Uniax-
ialMaterial objects, mats = [matTagl,dofl,
matTag2,dof2, ...]
the force-deformation quantity to be modeled by this
section object. One of the following section dof may
be used:
e 'P' Axial force-deformation
e 'Mz' Moment-curvature about section local z-
axis
e 'Vy' Shear force-deformation along section
local y-axis
e 'My' Moment-curvature about section local y-
axis
e 'Vz' Shear force-deformation along section
local z-axis
e 'T' Torsion Force-Deformation

sectionTag (int)

tag of previously-defined Section object to which
the UniaxialMaterial objects are aggregated as addi-
tional force-deformation relationships (optional)

Uniaxial Section

section ('Uniaxial’, seclag, matTag, quantity)
This command is used to construct a UniaxialSection object which uses a previously-defined UniaxialMaterial
object to represent a single section force-deformation response quantity.

1.4. Model Commands

149

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

secTag (int) unique section tag

matTag (int) tag of uniaxial material

quantity (str) the force-deformation quantity to be modeled by this
section object. One of the following section dof may
be used:

e 'P' Axial force-deformation

e 'Mz' Moment-curvature about section local z-
axis

e 'Vy' Shear force-deformation along section
local y-axis

e 'My' Moment-curvature about section local y-
axis

e 'Vz' Shear force-deformation along section
local z-axis

e 'T"' Torsion Force-Deformation

Elastic Membrane Plate Section

section (’ElasticMembranePlateSection’, secTag, E, nu, h, rho)
This command allows the user to construct an ElasticMembranePlateSection object, which is an isotropic section
appropriate for plate and shell analysis.

secTag (int) | unique section tag
E (float) Young’s Modulus
nu (float) Poisson’s Ratio

h (float) depth of section
rho (float) mass density

Plate Fiber Section

section ('PlateFiber’, seclag, matlag, h)
This command allows the user to construct a MembranePlateFiberSection object, which is a section that numer-
ically integrates through the plate thickness with “fibers” and is appropriate for plate and shell analysis.

secTag (int) | unique section tag
matTag (int) | nDMaterial tag to be assigned to each fiber
h (float) plate thickness

Bidirectional Section

section (’Bidirectional’, secTag, E, Fy, Hiso, Hkin, codel="Vy’, code2="P’)
This command allows the user to construct a Bidirectional section, which is a stress-resultant plasticity model
of two coupled forces. The yield surface is circular and there is combined isotropic and kinematic hardening.

150 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

secTag (int)

unique section tag

E (float)

elastic modulus

Fy (float)

yield force

Hiso (float)

isotropic hardening modulus

Hkin (float)

kinematic hardening modulus

codel (str)

section force code for direction 1 (optional)

code? (str)

section force code for direction 2 (optional)
One of the following section code may be used:
e 'P' Axial force-deformation
e 'Mz' Moment-curvature about section local z-
axis
e 'Vy' Shear force-deformation along section
local y-axis
e 'My' Moment-curvature about section local y-
axis
e 'Vz' Shear force-deformation along section
local z-axis
e 'T"' Torsion Force-Deformation

Isolator2spring Section

section (’Iso2spring’, matTag, tol, ki, Fyo, k20, kvo, hb, PE, Po=0.0)
This command is used to construct an Isolator2spring section object, which represents the buckling behavior of
an elastomeric bearing for two-dimensional analysis in the lateral and vertical plane. An Isolator2spring section
represents the resultant force-deformation behavior of the bearing, and should be used with a zeroLengthSection
element. The bearing should be constrained against rotation.

secTag unique section tag
(int)
tol tolerance for convergence of the element state. Suggested value: E-12 to E-10. OpenSees will
(float) | warn if convergence is not achieved, however this usually does not prevent global convergence.
k1l initial stiffness for lateral force-deformation
(float)
Fyo nominal yield strength for lateral force-deformation
(float)
k2o nominal postyield stiffness for lateral force-deformation
(float)
kvo nominal stiffness in the vertical direction
(float)
hb total height of elastomeric bearing
(float)
PE Euler Buckling load for the bearing
(float)
Po axial load at which nominal yield strength is achieved (optional)
(float)
LayeredShell

nDMaterial (’LayeredShell’, sectionTag, nLayers *mats)

This command will create the section of the multi-layer shell element, including the multi-dimensional concrete,

1.4. Model Commands

151

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

reinforcement material and the corresponding thickness.

sectionTag (int) | unique tag among sections
nLayers (int) total numbers of layers
mats (list) a list of material tags and thickenss, [[matl,thkl], ..., [mat2,thk2]]

1.4.16 frictionModel commands

frictionModel (finType, frnlag, *frnArgs)
The frictionModel command is used to construct a friction model object, which specifies the behavior of the
coefficient of friction in terms of the absolute sliding velocity and the pressure on the contact area. The command
has at least one argument, the friction model type.

frnType (str) | frictionModel type
frnTag (int) frictionModel tag.
frnArgs (list) | alist of frictionModel arguments, must be preceded with *.

For example,

frnType = 'Coulomb'
frnTag = 1
frnArgs = [mu]

frictionModel (frnType, frnTag, =xfrnArgs)

The following contain information about available frnType:

Coulomb

frictionModel ('Coulomb’, frnTag, mu)
This command is used to construct a Coulomb friction model object. Coulomb’s Law of Friction states that
kinetic friction is independent of the sliding velocity.

frnTag (int) | unique friction model tag
mu (float) coefficient of friction

Velocity Dependent Friction

frictionModel (’'VelDependent’, frnTag, muSlow, muFast, transRate)
This command is used to construct a VelDependent friction model object. It is useful for modeling the behavior
of PTFE or PTFE-like materials sliding on a stainless steel surface. For a detailed presentation on the velocity
dependence of such interfaces please refer to Constantinou et al. (1999).

frnTag (int) unique friction model tag

muS1ow (float) coefficient of friction at low velocity
muFast (float) coefficient of friction at high velocity
transRate (float) | transition rate from low to high velocity

—transRate - |v|

K= Kfast — (/’Lfast - ,Uslow) - €

152 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
http://en.wikipedia.org/wiki/Friction
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
http://en.wikipedia.org/wiki/Polytetrafluoroethylene
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

REFERENCE:

Constantinou, M.C., Tsopelas, P., Kasalanati, A., and Wolff, E.D. (1999). “Property modification factors for seismic
isolation bearings”. Report MCEER-99-0012, Multidisciplinary Center for Earthquake Engineering Research, State
University of New York.

Velocity and Normal Force Dependent Friction

frictionModel (’'VelNormalFrcDep’, frnTag, aSlow, nSlow, aFast, nFast, alpha0, alphal, alpha2, maxMu-

Fact)
This command is used to construct a VelNormalFrcDep friction model object.

frnTag unique friction model tag

(int)

aSlow | constant for coefficient of friction at low velocity

(float)

nSlow | exponent for coefficient of friction at low velocity

(float)

aFast | constant for coefficient of friction at high velocity

(float)

nFast | exponent for coefficient of friction at high velocity

(float)

alpha(constant rate parameter coefficient

(float)

alphal linear rate parameter coefficient

(float)

alpha2 quadratic rate parameter coefficient

(float)

maxMul factor for determining the maximum coefficient of friction. This value prevents the friction coef-

(float) | ficient from exceeding an unrealistic maximum value when the normal force becomes very small.
The maximum friction coefficient is determined from pFast, for example y < maxMuF acx Fast.

Velocity and Pressure Dependent Friction

frictionModel (’'VelPressureDep’, frnTag, muSlow, muFast0, A, deltaMu, alpha, transRate)
This command is used to construct a VelPressureDep friction model object.

frnTag (int) unique friction model tag

muSlow (float) coefficient of friction at low velocity

muFastO0 (float) initial coefficient of friction at high velocity

A (float) nominal contact area

deltaMu (float) pressure parameter calibrated from experimental data
alpha (float) pressure parameter calibrated from experimental data
transRate (float) | transition rate from low to high velocity

Multi-Linear Velocity Dependent Friction

frictionModel (’'VelDepMultiLinear’, frnTag, ’-vel’, *velocityPoints, ’-frn’, *frictionPoints)
This command is used to construct a VelDepMultiLinear friction model object. The friction-velocity relationship
is given by a multi-linear curve that is define by a set of points. The slope given by the last two specified points
on the positive velocity axis is extrapolated to infinite positive velocities. Velocity and friction points need to be

1.4. Model Commands 153

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

equal or larger than zero (no negative values should be defined). The number of provided velocity points needs
to be equal to the number of provided friction points.

frnTag (int) unique friction model tag
velocityPoints (list (float)) | list of velocity points along friction-velocity curve
frictionPoints (list (float)) | list of friction points along friction-velocity curve

1.4.17 geomTransf commands

geomTransf£ (transfType, transflag, *transfArgs)
The geometric-transformation command is used to construct a coordinate-transformation (CrdTransf) object,
which transforms beam element stiffness and resisting force from the basic system to the global-coordinate
system. The command has at least one argument, the transformation type.

transfType (str) | geomTransf type
transfTag (int) geomTransf tag.
transfArgs (list) | alist of geomTransf arguments, must be preceded with «.

For example,

transfType = 'Linear'

transfTag = 1

transfArgs = []

geomTransf (transfType, transfTag, *transfArgs)

The following contain information about available t ransfType:

Linear Transformation

geomTransf ('Linear’, transflag, *-jntOffset’, *dI, *dJ)

geomTransf£ ('Linear’, transflag, *vecxz, ’-jntOffset’, *dI, *dJ)
This command is used to construct a linear coordinate transformation (LinearCrdTransf) object, which performs
a linear geometric transformation of beam stiffness and resisting force from the basic system to the global-
coordinate system.

trangsfiffeger tag identifying transformation
(int)
vecxgz X, Y, and Z components of vecxz, the vector used to define the local x-z plane of the local-coordinate
(list | system. The local y-axis is defined by taking the cross product of the vecxz vector and the x-axis.
(float)) These components are specified in the global-coordinate system X,Y,Z and define a vector that is in
a plane parallel to the x-z plane of the local-coordinate system. These items need to be specified for
the three-dimensional problem.

dr joint offset values — offsets specified with respect to the global coordinate system for element-end
(list | node i (the number of arguments depends on the dimensions of the current model).

(float)
dag joint offset values — offsets specified with respect to the global coordinate system for element-end
(list | node j (the number of arguments depends on the dimensions of the current model).

(float)

154 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

PDelta Transformation

geomTransf ('PDelta’, transflag, -jntOffset’, *dI, *dJ)

geomTransf ('PDelta’, transflag, *vecxz, *-jntOffset’, *dlI, *dJ)
This command is used to construct the P-Delta Coordinate Transformation (PDeltaCrdTransf) object, which

perform

s a linear geometric transformation of beam stiffness and resisting force from the basic system to the

global coordinate system, considering second-order P-Delta effects.

(int)

trangsfiffeger tag identifying transformation

(list
(float)

vecxz X, Y, and Z components of vecxz, the vector used to define the local x-z plane of the local-coordinate

system. The local y-axis is defined by taking the cross product of the vecxz vector and the x-axis.
These components are specified in the global-coordinate system X,Y,Z and define a vector that is in
a plane parallel to the x-z plane of the local-coordinate system. These items need to be specified for
the three-dimensional problem.

dI
(list
(float)

joint offset values — offsets specified with respect to the global coordinate system for element-end
node i (the number of arguments depends on the dimensions of the current model).

dJd
(list
(float)

joint offset values — offsets specified with respect to the global coordinate system for element-end
node j (the number of arguments depends on the dimensions of the current model).

Note: P LARGE Delta effects do not include P small delta effects.

Corotationa

| Transformation

geomTransf ('Corotational’, transflag, '-jntOffset’, *dI, *dJ)

geomTransf ('Corotational’, transflag, *vecxz)
This command is used to construct the Corotational Coordinate Transformation (CorotCrdTransf) object. Coro-

tational

transformation can be used in large displacement-small strain problems.

tran

(int)

s fiffeggr tag identifying transformation

vecx
(list
(float)

z X, Y, and Z components of vecxz, the vector used to define the local x-z plane of the local-coordinate
system. The local y-axis is defined by taking the cross product of the vecxz vector and the x-axis.
These components are specified in the global-coordinate system X,Y,Z and define a vector that is in
a plane parallel to the x-z plane of the local-coordinate system. These items need to be specified for
the three-dimensional problem.

dI joint offset values — offsets specified with respect to the global coordinate system for element-end
(list | node i (the number of arguments depends on the dimensions of the current model).

(float)

dJ | joint offset values — offsets specified with respect to the global coordinate system for element-end
(list | node j (the number of arguments depends on the dimensions of the current model).

(float)

Note: Currently the transformation does not deal with element loads and will ignore any that are applied to the

element.

1.4. Model Commands 155

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

1.5 Analysis Commands

In OpenSees, an analysis is an object which is composed by the aggregation of component objects. It is the component
objects which define the type of analysis that is performed on the model. The component classes, as shown in the
figure below, consist of the following:

1. ConstraintHandler — determines how the constraint equations are enforced in the analysis — how it handles the
boundary conditions/imposed displacements

2. DOF_Numberer — determines the mapping between equation numbers and degrees-of-freedom
3. Integrator — determines the predictive step for time t+dt

4. SolutionAlgorithm — determines the sequence of steps taken to solve the non-linear equation at the current time
step

5. SystemOfEqn/Solver — within the solution algorithm, it specifies how to store and solve the system of equations
in the analysis

6. Convergence Test — determines when convergence has been achieved.

1.5.1 constraints commands

constraints (constraintType, *constraintArgs)
This command is used to construct the ConstraintHandler object. The ConstraintHandler object determines how
the constraint equations are enforced in the analysis. Constraint equations enforce a specified value for a DOF,
or a relationship between DOFs.

constraintType (str) | constraints type
constraintArgs (list) | alist of constraints arguments

The following contain information about available constraintType:

Plain Constraints

constraints ('Plain’)
This command is used to construct a Plain constraint handler. A plain constraint handler can only enforce
homogeneous single point constraints (fix command) and multi-point constraints constructed where the con-
straint matrix is equal to the identity (equalDOF command). The following is the command to construct a plain
constraint handler:

Note: As mentioned, this constraint handler can only enforce homogeneous single point constraints (fix command)
and multi-pont constraints where the constraint matrix is equal to the identity (equalDOF command).

Lagrange Multipliers

constraints (’'Lagrange’, alphaS=1.0, alphaM=1.0)
This command is used to construct a LagrangeMultiplier constraint handler, which enforces the constraints by
introducing Lagrange multiplies to the system of equation. The following is the command to construct a plain
constraint handler:

156 Chapter 1. Author

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

OpenSeesPy Documentation, Release 1.0.0b1

alphas (float) | ag factor on single points.
alphaM (float) | ays factor on multi-points.

Note: The Lagrange multiplier method introduces new unknowns to the system of equations. The diagonal part of the
system corresponding to these new unknowns is 0.0. This ensure that the system IS NOT symmetric positive definite.

Penalty Method

constraints (’'Penalty’, alphaS=1.0, alphaM=1.0)
This command is used to construct a Penalty constraint handler, which enforces the constraints using the penalty
method. The following is the command to construct a penalty constraint handler:

alphas (float) | ag factor on single points.
alphaM (float) | ays factor on multi-points.

Note: The degree to which the constraints are enforced is dependent on the penalty values chosen. Problems can
arise if these values are too small (constraint not enforced strongly enough) or too large (problems associated with
conditioning of the system of equations).

Transformation Method

constraints ('Transformation’)
This command is used to construct a transformation constraint handler, which enforces the constraints using the
transformation method. The following is the command to construct a transformation constraint handler

Note:

* The single-point constraints when using the transformation method are done directly. The matrix equation is
not manipulated to enforce them, rather the trial displacements are set directly at the nodes at the start of each
analysis step.

* Great care must be taken when multiple constraints are being enforced as the transformation method does not
follow constraints:

1. If a node is fixed, constrain it with the fix command and not equalDOF or other type of constraint.

2. If multiple nodes are constrained, make sure that the retained node is not constrained in any other con-
straint.

And remember if a node is constrained to multiple nodes in your model it probably means you have messed up.

1.5.2 numberer commands

numberer (numbererType, *numbererArgs)
This command is used to construct the DOF_Numberer object. The DOF_Numberer object determines the
mapping between equation numbers and degrees-of-freedom — how degrees-of-freedom are numbered.

1.5. Analysis Commands 157

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

numbererType (str) | numberer type
numbererArgs (list) | a list of numberer arguments

The following contain information about available numbererType:

Plain Numberer

numberer (’Plain’)
This command is used to construct a Plain degree-of-freedom numbering object to provide the mapping between
the degrees-of-freedom at the nodes and the equation numbers. A Plain numberer just takes whatever order the
domain gives it nodes and numbers them, this ordering is both dependent on node numbering and size of the
model.

Note: For very small problems and for the sparse matrix solvers which provide their own numbering scheme, order
is not really important so plain numberer is just fine. For large models and analysis using solver types other than the
sparse solvers, the order will have a major impact on performance of the solver and the plain handler is a poor choice.

RCM Numberer

numberer ('RCM’)
This command is used to construct an RCM degree-of-freedom numbering object to provide the mapping be-
tween the degrees-of-freedom at the nodes and the equation numbers. An RCM numberer uses the reverse
Cuthill-McKee scheme to order the matrix equations.

AMD Numberer

numberer ('AMD’)
This command is used to construct an AMD degree-of-freedom numbering object to provide the mapping be-
tween the degrees-of-freedom at the nodes and the equation numbers. An AMD numberer uses the approximate
minimum degree scheme to order the matrix equations.

1.5.3 system commands

system (systemType, *systemArgs)
This command is used to construct the LinearSOE and LinearSolver objects to store and solve the system of
equations in the analysis.

systemType (str) | system type
systemArgs (list) | alist of system arguments

The following contain information about available systemType:

BandGeneral SOE

system ('BandGen’)
This command is used to construct a BandGeneralSOE linear system of equation object. As the name implies,
this class is used for matrix systems which have a banded profile. The matrix is stored as shown below in a

158 Chapter 1. Author

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

OpenSeesPy Documentation, Release 1.0.0b1

1dimensional array of size equal to the bandwidth times the number of unknowns. When a solution is required,
the Lapack routines DGBSV and SGBTRS are used.

BandSPD SOE

system ('BandSPD’)
This command is used to construct a BandSPDSOE linear system of equation object. As the name implies, this
class is used for symmetric positive definite matrix systems which have a banded profile. The matrix is stored as
shown below in a 1 dimensional array of size equal to the (bandwidth/2) times the number of unknowns. When
a solution is required, the Lapack routines DPBSV and DPBTRS are used.

ProfileSPD SOE

system ('ProfileSPD’)
This command is used to construct a profileSSPDSOE linear system of equation object. As the name implies,
this class is used for symmetric positive definite matrix systems. The matrix is stored as shown below in a
1 dimensional array with only those values below the first non-zero row in any column being stored. This is
sometimes also referred to as a skyline storage scheme.

SuperLU SOE

system ('SuperLU’)
This command is used to construct a SparseGEN linear system of equation object. As the name implies, this
class is used for sparse matrix systems. The solution of the sparse matrix is carried out using SuperL.U.

UmfPack SOE

system ('UmfPack’)
This command is used to construct a sparse system of equations which uses the UmfPack solver.

FullGeneral SOE

system ('FullGeneral’)
This command is used to construct a Full General linear system of equation object. As the name implies, the
class utilizes NO space saving techniques to cut down on the amount of memory used. If the matrix is of size,
nxn, then storage for an nxn array is sought from memory when the program runs. When a solution is required,
the Lapack routines DGESV and DGETRS are used.

Note: This type of system should almost never be used! This is because it requires a lot more memory than every
other solver and takes more time in the actal solving operation than any other solver. It is required if the user is
interested in looking at the global system matrix.

SparseSYM SOE

system ('SparseSYM’)
This command is used to construct a sparse symmetric system of equations which uses a row-oriented solution
method in the solution phase.

* PFEM SOE

1.5. Analysis Commands 159

http://crd.lbl.gov/~xiaoye/SuperLU/
http://faculty.cse.tamu.edu/davis/suitesparse.html

OpenSeesPy Documentation, Release 1.0.0b1

1.5.4 test commands

test (testType, *testArgs)
This command is used to construct the LinearSOE and LinearSolver objects to store and solve the test of equa-
tions in the analysis.

testType (str) | testtype
testArgs (list) | alist of test arguments

The following contain information about available test Type:

NormUnbalance

test ('NormUnbalance’, tol, iter, pFlag=0, nType=2, maxincr=-1)
Create a NormUnbalance test, which uses the norm of the right hand side of the matrix equation to determine if
convergence has been reached.

tol (float) Tolerance criteria used to check for convergence.
iter (int) Max number of iterations to check
pFlag (int) Print flag (optional):

* 0 print nothing.

e 1 print information on norms each time
test () is invoked.

e 2 print information on norms and number of it-
erations at end of successful test.

* 4 at each step it will print the norms and also
the AU and R(U) vectors.

5 if it fails to converge at end of numIter it
will print an error message but return a suc-
cessfull test.

nType (int) Type of norm, (0 = max-norm, 1 = 1-norm, 2 = 2-
norm). (optional)
maxincr (int) Maximum times of error increasing. (optional)

When using the Penalty method additional large forces to enforce the penalty functions exist on the right hand
side, making convergence using this test usually impossible (even though solution might have converged).

NormDisplncr

test ('NormDisplncr’, tol, iter, pFlag=0, nType=2)
Create a NormUnbalance test, which uses the norm of the left hand side solution vector of the matrix equation
to determine if convergence has been reached.

160 Chapter 1. Author

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

tol (float)

Tolerance criteria used to check for convergence.

iter (int)

Max number of iterations to check

pFlag (int)

Print flag (optional):

* 0 print nothing.

e 1 print information on norms each time
test () is invoked.

e 2 print information on norms and number of it-
erations at end of successful test.

* 4 at each step it will print the norms and also
the AU and R(U) vectors.

5 if it fails to converge at end of numIter it
will print an error message but return a suc-
cessfull test.

nType (int)

Type of norm, (0 = max-norm, 1 = 1-norm, 2 = 2-
norm). (optional)

When using the Lagrange method to enforce the constraints, the Lagrange multipliers appear in the solution

vector.

energylncr

test (’Energylncr’, tol, iter, pFlag=0, nType=2)

Create a Energylncr test, which uses the dot product of the solution vector and norm of the right hand side of
the matrix equation to determine if convergence has been reached.

tol (float)

Tolerance criteria used to check for convergence.

iter (int)

Max number of iterations to check

pFlag (int)

Print flag (optional):
¢ 0 print nothing.
e 1 print information on norms each time
test () is invoked.
¢ 2 print information on norms and number of it-
erations at end of successful test.
* 4 at each step it will print the norms and also
the AU and R(U) vectors.
5 if it fails to converge at end of numIter it
will print an error message but return a suc-
cessfull test.

nType (int)

Type of norm, (0 = max-norm, 1 = 1-norm, 2 = 2-
norm). (optional)

* When using the Penalty method additional large forces to enforce the penalty functions exist on the right
hand side, making convergence using this test usually impossible (even though solution might have con-

verged).

* When using the Lagrange method to enforce the constraints, the Lagrange multipliers appear in the solution

vector.

1.5. Analysis Commands

161

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

RelativeNormUnbalance

test (’RelativeNormUnbalance’, tol, iter, pFlag=0, nType=2)
Create a RelativeNormUnbalance test, which uses the relative norm of the right hand side of the matrix equation
to determine if convergence has been reached.

tol (float) Tolerance criteria used to check for convergence.
iter (int) Max number of iterations to check
pFlag (int) Print flag (optional):

* 0 print nothing.

e 1 print information on norms each time
test () is invoked.

e 2 print information on norms and number of it-
erations at end of successful test.

* 4 at each step it will print the norms and also
the AU and R(U) vectors.

5 if it fails to converge at end of numIter it
will print an error message but return a suc-
cessfull test.

nType (int) Type of norm, (0 = max-norm, 1 = l-norm, 2 = 2-
norm). (optional)

* When using the Penalty method additional large forces to enforce the penalty functions exist on the right
hand side, making convergence using this test usually impossible (even though solution might have con-
verged).

RelativeNormDisplncr

test (’RelativeNormDisplncr’, tol, iter, pFlag=0, nType=2)
Create a RelativeNormDisplncr test, which uses the relative of the solution vector of the matrix equation to
determine if convergence has been reached.

tol (float) Tolerance criteria used to check for convergence.
iter (int) Max number of iterations to check
pFlag (int) Print flag (optional):

* 0 print nothing.

e 1 print information on norms each time
test () is invoked.

e 2 print information on norms and number of it-
erations at end of successful test.

* 4 at each step it will print the norms and also
the AU and R(U) vectors.

e 5 if it fails to converge at end of numIter it
will print an error message but return a suc-
cessfull test.

nType (int) Type of norm, (0 = max-norm, 1 = 1-norm, 2 = 2-
norm). (optional)

162 Chapter 1. Author

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

RelativeTotalNormDisplncr

test (’relativeTlotalNormDisplncr’, tol, iter, pFlag=0, nType=2)
Create a RelativeTotalNormDisplncr test, which uses the ratio of the current norm to the total norm (the sum of
all the norms since last convergence) of the solution vector.

tol (float) Tolerance criteria used to check for convergence.
iter (int) Max number of iterations to check
pFlag (int) Print flag (optional):

* 0 print nothing.

e 1 print information on norms each time
test () is invoked.

e 2 print information on norms and number of it-
erations at end of successful test.

* 4 at each step it will print the norms and also
the AU and R(U) vectors.

5 if it fails to converge at end of numIter it
will print an error message but return a suc-
cessfull test.

nType (int) Type of norm, (0 = max-norm, 1 = l-norm, 2 = 2-
norm). (optional)

RelativeEnergylncr

test (’RelativeEnergylncr’, tol, iter, pFlag=0, nType=2)
Create a RelativeEnergylIncr test, which uses the relative dot product of the solution vector and norm of the right
hand side of the matrix equation to determine if convergence has been reached.

tol (float) Tolerance criteria used to check for convergence.
iter (int) Max number of iterations to check
pFlag (int) Print flag (optional):

¢ 0 print nothing.

e 1 print information on norms each time
test () is invoked.

e 2 print information on norms and number of it-
erations at end of successful test.

* 4 at each step it will print the norms and also
the AU and R(U) vectors.

5 if it fails to converge at end of numIter it
will print an error message but return a suc-
cessfull test.

nType (int) Type of norm, (0 = max-norm, 1 = 1-norm, 2 = 2-
norm). (optional)

FixedNumlter

test ('FixedNumlter’, iter, pFlag=0, nType=2)
Create a FixedNumlter test, that performs a fixed number of iterations without testing for convergence.

1.5. Analysis Commands 163

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

tol (float)

Tolerance criteria used to check for convergence.

iter (int)

Max number of iterations to check

pFlag (int)

Print flag (optional):

* 0 print nothing.

e 1 print information on norms each time
test () is invoked.

e 2 print information on norms and number of it-
erations at end of successful test.

* 4 at each step it will print the norms and also
the AU and R(U) vectors.

5 if it fails to converge at end of numIter it
will print an error message but return a suc-
cessfull test.

nType (int)

Type of norm, (0 = max-norm, 1 = 1-norm, 2 = 2-
norm). (optional)

NormDispAndUnbalance

test ('NormDispAndUnbalance’, tollncr, tolR, iter, pFlag=0, nType=2, maxincr=-1)
Create a NormDispAndUnbalance test, which check if both 'NormUnbalance' and 'NormDispIncr' are

converged.

tolIncr (float)

Tolerance for left hand solution increments

tolIncr (float)

Tolerance for right hand residual

iter (int)

Max number of iterations to check

pFlag (int)

Print flag (optional):

¢ 0 print nothing.

e 1 print information on norms each time
test () is invoked.

* 2 print information on norms and number of it-
erations at end of successful test.

* 4 at each step it will print the norms and also
the AU and R(U) vectors.

5 if it fails to converge at end of numIter it
will print an error message but return a suc-
cessfull test.

nType (int)

Type of norm, (0 = max-norm, 1 = 1-norm, 2 = 2-
norm). (optional)

maxincr (int)

Maximum times of error increasing. (optional)

NormDispOrUnbalance

test ('NormDispOrUnbalance’, tollncr, tolR, iter, pFlag=0, nType=2, maxincr=-1)
Create a NormDispOrUnbalance test, which check if both 'NormUnbalance' and 'normDispIncr' are

converged.

164

Chapter 1. Author

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

tolIncr (float) Tolerance for left hand solution increments
tolIncr (float) Tolerance for right hand residual

iter (int) Max number of iterations to check

pFlag (int) Print flag (optional):

¢ 0 print nothing.

e 1 print information on norms each time
test () is invoked.

* 2 print information on norms and number of it-
erations at end of successful test.

* 4 at each step it will print the norms and also
the AU and R(U) vectors.

e 5 if it fails to converge at end of numIter it
will print an error message but return a suc-
cessfull test.

nType (int) Type of norm, (0 = max-norm, 1 = 1-norm, 2 = 2-
norm). (optional)
maxincr (int) Maximum times of error increasing. (optional)

e PFEM test

1.5.5 algorithm commands

algorithm (algoType, *algoArgs)
This command is used to construct a SolutionAlgorithm object, which determines the sequence of steps taken
to solve the non-linear equation.

algoType (str) | algorithm type
algoArgs (list) | alist of algorithm arguments

The following contain information about available algoType:

Linear Algorithm

algorithm (’Linear’, secant=False, initial=False, factorOnce=False)
Create a Linear algorithm which takes one iteration to solve the system of equations.

secant (bool) Flag to indicate to use secant stiffness. (optional)
initial (bool) Flag to indicate to use initial stiffness. (optional)
factorOnce (bool) | Flag to indicate to only set up and factor matrix once. (optional)

Note: As the tangent matrix typically will not change during the analysis in case of an elastic system it is highly
advantageous to use the -factorOnce option. Do not use this option if you have a nonlinear system and you want the
tangent used to be actual tangent at time of the analysis step.

1.5. Analysis Commands 165

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

OpenSeesPy Documentation, Release 1.0.0b1

Newton Algorithm

algorithm (’'Newton’, secant=False, initial=False, initialThenCurrent=False)
Create a Newton-Raphson algorithm. The Newton-Raphson method is the most widely used and most robust
method for solving nonlinear algebraic equations.

secant (bool) Flag to indicate to use secant stiffness. (optional)

initial (bool) Flag to indicate to use initial stiffness.(optional)

initialThenCurrent Flag to indicate to use initial stiffness on first step, then use current stiffness for
(bool) subsequent steps. (optional)

Newton with Line Search

algorithm ('NewtonLineSearch’, Bisection=False, Secant=False, RegulaFalsi=False, Initiallnterpo-

lated=Fualse, tol=0.8, maxlter=10, minEta=0.1, maxEta=10.0)
Create a NewtonLineSearch algorithm. Introduces line search to the Newton algorithm to solve the nonlinear

residual equation.

Bisection (bool) Flag to use Bisection line search. (optional)
Secant (bool) Flag to use Secant line search. (optional)
RegulaFalsi (bool) Flag to use RegulaFalsi line search. (optional)
InitialInterpolated (bool) | Flag to use Initiallnterpolated line search.(optional)
tol (float) Tolerance for search. (optional)

maxIter (float) Max num of iterations to try. (optional)

minEta (float) Min n value. (optional)

maxEta (float) Max 7 value. (optional)

Modified Newton Algorithm

algorithm ('ModifiedNewton’, secant=False, initial=False)
Create a ModifiedNewton algorithm. The difference to Newton is that the tangent at the initial guess is used in
the iterations, instead of the current tangent.

secant (bool) Flag to indicate to use secant stiffness. (optional)
initial (bool) | Flag to indicate to use initial stiffness.(optional)

Krylov-Newton Algorithm

algorithm (’'KrylovNewton’, iterate="current’, increment="current’, maxDim=3)
Create a KrylovNewton algorithm which uses a Krylov subspace accelerator to accelerate the convergence of

the ModifiedNewton.
iterate (str) Tangent to iterate on, 'current', 'initial', 'noTangent ' (optional)
increment Tangent to increment on, 'current', 'initial', 'noTangent' (optional)
(str)
maxDim (int) Max number of iterations until the tangent is reformed and the acceleration restarts.
(optional)

166 Chapter 1. Author

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

SecantNewton Algorithm

algorithm (’SecantNewton’, iterate="current’, increment="current’, maxDim=3)
Create a SecantNewton algorithm which uses the two-term update to accelerate the convergence of the Modi-

fiedNewton.

The default “cut-out” values recommended by Crisfield (R1=3.5, R2=0.3) are used.

iterate (str)

Tangent to iterate on, 'current', 'initial', 'noTangent ' (optional)

increment

(str)

Tangent to increment on, 'current', 'initial', 'noTangent' (optional)

maxDim (int)

Max number of iterations until the tangent is reformed and the acceleration restarts.
(optional)

RaphsonNewton Algorithm

algorithm (’'RaphsonNewton’, iterate="current’, increment="current’)
Create a RaphsonNewton algorithm which uses Raphson accelerator.

iterate (str)

Tangent to iterate on, 'current', 'initial', 'noTangent ' (optional)

increment (str) | Tangent to increment on, 'current', 'initial', 'noTangent ' (optional)

PeriodicNewton Algorithm

algorithm (’PeriodicNewton’, iterate="current’, increment="current’, maxDim=3)
Create a PeriodicNewton algorithm using periodic accelerator.

iterate (str)

Tangent to iterate on, 'current', 'initial', 'noTangent ' (optional)

increment

(str)

Tangent to increment on, 'current', 'initial', 'noTangent' (optional)

maxDim (int)

Max number of iterations until the tangent is reformed and the acceleration restarts.
(optional)

BFGS Algorithm

algorithm ('BFGS’, secant=False, initial=False, count=10)
Create a BFGS algorithm. The BFGS method is one of the most effective matrix-update or quasi Newton
methods for iteration on a nonlinear system of equations. The method computes new search directions at each
iteration step based on the initial jacobian, and subsequent trial solutions. The unlike regular Newton does not
require the tangent matrix be reformulated and refactored at every iteration, however unlike ModifiedNewton it
does not rely on the tangent matrix from a previous iteration.

secant (bool) Flag to indicate to use secant stiffness. (optional)

initial (bool) | Flag to indicate to use initial stiffness.(optional)

count (int) Number of iterations. (optional)

1.5. Analysis Commands 167

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

Broyden Algorithm

algorithm (’Broyden’, secant=False, initial=False, count=10)
Create a Broyden algorithm for general unsymmetric systems which performs successive rank-one updates of
the tangent at the first iteration of the current time step.

secant (bool) Flag to indicate to use secant stiffness. (optional)
initial (bool) | Flag to indicate to use initial stiffness.(optional)
count (int) Number of iterations. (optional)

1.5.6 integrator commands

integrator (intType, *intArgs)
This command is used to construct the Integrator object. The Integrator object determines the meaning of the
terms in the system of equation object Ax=B.

The Integrator object is used for the following:
¢ determine the predictive step for time t+dt
* specify the tangent matrix and residual vector at any iteration

* determine the corrective step based on the displacement increment dU

intType (str) | integrator type
intArgs (list) | alist of integrator arguments

The following contain information about available int Type:

LoadControl

integrator ('LoadControl’, incr, numlter=1, minlncr=incr, maxIncr=incr)
Create a OpenSees LoadControl integrator object.

incr (float) Load factor increment A.

numIter (int) Number of iterations the user would like to occur in the solution algorithm. (optional)
minIncr (float) | Min stepsize the user will allow \,,,;,,. (optional)

maxIncr (float) | Max stepsize the user will allow A, 4. (optional)

1. The change in applied loads that this causes depends on the active load pattern (those load pattern not
set constant) and the loads in the load pattern. If the only active load acting on the Domain are in load
pattern with a Linear time series with a factor of 1.0, this integrator is the same as the classical load control
method.

2. The optional arguments are supplied to speed up the step size in cases where convergence is too fast and
slow down the step size in cases where convergence is too slow.

DisplacementControl

integrator (’'DisplacementControl’, nd, dof, incr, numlter=1, dUmin=incr, dUmax=incr)
Create a DisplacementControl integrator. In an analysis step with Displacement Control we seek to determine

168 Chapter 1. Author

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

the time step that will result in a displacement increment for a particular degree-of-freedom at a node to be a
prescribed value.

nd (int) tag of node whose response controls solution

dof (int) Degree of freedom at the node, 1 through ndf.

incr (float) First displacement increment AUy, .

numIter (int) Number of iterations the user would like to occur in the solution algorithm. (optional)
minIncr (float) | Min stepsize the user will allow AU,,,;,. (optional)

maxIncr (float) | Max stepsize the user will allow AU,;,q.. (Optional)

Minimum Unbalanced Displacement Norm

integrator ('MinUnbalDispNorm’, dlambdal, Jd=1, minLambda=dlambdal, maxLambda=dlambdal,

det=Fualse)
Create a MinUnbalDispNorm integrator.

dlambdal First load increment (pseudo-time step) at the first iteration in the next invocation of the
(float) analysis command.

Jd (int) Factor relating first load increment at subsequent time steps. (optional)

minLambda Min load increment. (optional)

(float)

maxLambda Max load increment. (optional)

(float)

Arc-Length Control

integrator ('ArcLength’, s, alpha)
Create a ArcLength integrator. In an analysis step with ArcLength we seek to determine the time step that will
result in our constraint equation being satisfied.

s (float) The arcLength.
alpha (float) | « ascaling factor on the reference loads.

Central Difference

integrator (’CentralDifference’)
Create a centralDifference integrator.

1. The calculation of U; + At, is based on using the equilibrium equation at time t. For this reason the method
is called an explicit integration method.

2. If there is no rayleigh damping and the C matrix is O, for a diagonal mass matrix a diagonal solver may
and should be used.

3. For stability, £ < £

n

Newmark Method

integrator ('Newmark’, gamma, beta, formD=True)
Create a Newmark integrator.

1.5. Analysis Commands 169

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

gamma (float) | ~ factor.
beta (float) [factor.
formD (bool) | Flag to indicate if use displacement as primary variable. If not, use acceleration. (optional)

1. If the accelerations are chosen as the unknowns and [is chosen as 0, the formulation results in the fast but
conditionally stable explicit Central Difference method. Otherwise the method is implicit and requires an
iterative solution process.

2. Two common sets of choices are
(a) Average Acceleration Method (y = 3,8 = 1)
(b) Linear Acceleration Method (y = 3,8 = ¢)
3.y > % results in numerical damping proportional to v — %
4. The method is second order accurate if and only if v = %

5. The method is unconditionally stable for 3 >= 3 >= i

Hilber-Hughes-Taylor Method

integrator ('HHT’, alpha, gamma=1.5-alpha, beta=(2-alpha)2/4)
Create a Hilber-Hughes-Taylor (HHT) integrator. This is an implicit method that allows for energy dissipation
and second order accuracy (which is not possible with the regular Newmark object). Depending on choices of
input parameters, the method can be unconditionally stable.

alpha (float) | « factor.
gamma (float) | ~ factor. (optional)
beta (float) [factor. (optional)

1. Like Mewmark and all the implicit schemes, the unconditional stability of this method applies to linear
problems. There are no results showing stability of this method over the wide range of nonlinear problems
that potentially exist. Experience indicates that the time step for implicit schemes in nonlinear situations
can be much greater than those for explicit schemes.

2. a = 1.0 corresponds to the Newmark method.
3. a should be between 0.67 and 1.0. The smaller the « the greater the numerical damping.

4. ~ and B are optional. The default values ensure the method is second order accurate and unconditionally
stable when avis 2 <= o <= 1.0. The defaults are:

2—a)?
5:(4)
and
T=3-a

Generalized Alpha Method

integrator ('GeneralizedAlpha’, alphaM, alphaF, gamma=0.5+alphaM-alphaF, beta=(1+alphaM-
alphaF)"2/4)
Create a GeneralizedAlpha integrator. This is an implicit method that like the HHT method allows for high
frequency energy dissipation and second order accuracy, i.e. At2. Depending on choices of input parameters,
the method can be unconditionally stable.

170 Chapter 1. Author

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

A

TRBDF2

2.
3.

4.

alphaM (float) | ayy factor.
alphaF (float) | ap factor.
gamma (float) ~ factor. (optional)
beta (float) B factor. (optional)

. Like Newmark and all the implicit schemes, the unconditional stability of this method applies to linear

problems. There are no results showing stability of this method over the wide range of nonlinear problems
that potentially exist. Experience indicates that the time step for implicit schemes in nonlinear situations
can be much greater than those for explicit schemes.

aps = 1.0, ap = 1.0 produces the Newmark Method.

aps = 1.0 corresponds to the integrator.HHT () method.

The method is second-order accurate provided v = % + oy — aF

The method is unconditionally stable provided oy >= ap >= %, 8 >= i + %(VM —F)

~ and 3 are optional. The default values ensure the method is unconditionally stable, second order accurate
and high frequency dissipation is maximized.

The defaults are:
y=45+ay—arp
and

8= i(l + apr —()éF)2

integrator ('TRBDF2’)

Create a TRBDF?2 integrator. The TRBDF?2 integrator is a composite scheme that alternates between
the Trapezoidal scheme and a 3 point backward Euler scheme. It does this in an attempt to conserve
energy and momentum, something Newmark does not always do.

As opposed to dividing the time-step in 2 as outlined in the Bathe2007, we just switch alternate between the 2
integration strategies,i.e. the time step in our implementation is double that described in the Bathe2007.

Explicit Difference

integrator ('ExplicitDifference’)
Create a ExplicitDifference integrator.

1.

When using Rayleigh damping, the damping ratio of high vibration modes is overrated, and the critical
time step size will be much smaller. Hence Modal damping is more suitable for this method.

There should be no zero element on the diagonal of the mass matrix when using this method.

Diagonal solver should be used when lumped mass matrix is used because the equations are uncoupled.

For stability, At < (\/@T - C) 2

e PFEM integrator

1.5. Analysis Commands 171

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://www.sciencedirect.com/science/article/pii/S0045794906003099
http://www.sciencedirect.com/science/article/pii/S0045794906003099

OpenSeesPy Documentation, Release 1.0.0b1

1.5.7 analysis command
analysis (analysisType)
This command is used to construct the Analysis object, which defines what type of analysis is to be performed.
¢ determine the predictive step for time t+dt
* specify the tangent matrix and residual vector at any iteration

* determine the corrective step based on the displacement increment dU

analysisType (str) char string identifying type of analysis object to be
constructed. Currently 3 valid options:
1. 'Static"' - for static analysis

2. 'Transient' - for transient analysis con-
stant time step
3. 'VariableTransient' - for transient

analysis with variable time step
4. 'PFEM' - for PFEM analysis.

Note: If the component objects are not defined before hand, the command automatically creates default component
objects and issues warning messages to this effect. The number of warning messages depends on the number of
component objects that are undefined.

1.5.8 eigen command

eigen (solver="-genBandArpack’, numEigenvalues)
Eigen value analysis. Return a list of eigen values.

numEigenval- | number of eigenvalues required

ues (int)

solver (str) optional string detailing type of solver: '-genBandArpack’',
'—symmBandLapack', '-fullGenLapack', (optional)

Note:

1. The eigenvectors are stored at the nodes and can be printed out using a Node Recorder, the nodeEigenvector
command, or the Print command.

2. The default eigensolver is able to solve only for N-1 eigenvalues, where N is the number of inertial DOFs. When
running into this limitation the -fullGenLapack solver can be used instead of the default Arpack solver.

1.5.9 analyze command

analyze (numlncr=1, dt=0.0, dtMin=0.0, dtMax=0.0, Jd=0)
Perform the analysis. Return 0 if successful, <0 if NOT successful

172 Chapter 1. Author

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

OpenSeesPy Documentation, Release 1.0.0b1

numIn¢mNumber of analysis steps to perform. (required except for PFEM analysis)

(int)

dt Time-step increment. (required for Transient analysis and VariableTransient analysis.)

(float)

dtMin| Minimum time steps. (required for VariableTransient analysis)

(float)

dtMax | Maximum time steps (required for VariableTransient analysis)

(float)

Jd Number of iterations user would like performed at each step. The variable transient analysis will

(float) | change current time step if last analysis step took more or less iterations than this to converge
(required for VariableTransient analysis)

1.6 Output Commands

Get outputs from OpenSees. These commands don’t change internal states of OpenSees.

1.6.1 basicDeformation command

basicDeformation (eleTag)
Returns the deformation of the basic system for a beam-column element.

’ eleTag (int) \ element tag.

1.6.2 basicForce command

basicForce (elelag)
Returns the forces of the basic system for a beam-column element.

| eleTag (int) [element tag.

1.6.3 basicStiffness command

basicStiffness (eleTag)
Returns the stiffness of the basic system for a beam-column element. A list of values in row order will be

returned.

] eleTag (int) \ element tag.

1.6.4 eleDynamicalForce command

eleDynamicalForce (eleTag, dof=-1)
Returns the elemental dynamic force.

1.6. Output Commands

173

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

eleTag element tag.

(int)

dof (int) specific dof at the element, (optional), if no dof is provided, a list of values for all dofs is
returned.

1.6.5 eleForce command

eleForce (eleTag, dof=-1)
Returns the elemental resisting force.

eleTag element tag.

(int)

dof (int) specific dof at the element, (optional), if no dof is provided, a list of values for all dofs is
returned.

1.6.6 eleNodes command

eleNodes (eleTag)
Get nodes in an element

] eletag (int) \ element tag.

1.6.7 eleResponse command

eleResponse (eleTag, *args)
This command is used to obtain the same element quantities as those obtained from the element recorder at a

particular time step.

eletag element tag.

(int)

args same arguments as those specified in element recorder. These arguments are specific to the
(list) type of element being used.

1.6.8 getEleTags command

getEleTags (’-mesh’, mtag)
Get all elements in the domain or in a mesh.

’ mtag (int) \ mesh tag. (optional) ‘

1.6.9 getLoadFactor command

getLoadFactor (patternlag)
Returns the load factor A for the pattern

patternTag (int) | pattern tag.

174 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

1.6.10 getNodeTags command

getNodeTags (-mesh’, mtag)
Get all nodes in the domain or in a mesh.

[mtag (int) [mesh tag. (optional) |

1.6.11 getTime command

getTime ()
Returns the current time in the domain.

1.6.12 nodeAccel command

nodeAccel (nodeTag, dof=-1)
Returns the current acceleration at a specified node.

nodeTag node tag.
(int)
dof (int) specific dof at the node (1 through ndf), (optional), if no dof is provided, a list of values for
all dofs is returned.

1.6.13 nodeBounds command

nodeBounds ()
Get the boundary of all nodes. Return a list of boundary values.

1.6.14 nodeCoord command

nodeCoord (nodeTag, dim=-1)
Returns the coordinates of a specified node.

nodeTag | node tag.
(int)
dof (int) specific dimension at the node (1 through ndf), (optional), if no dim is provided, a list of
values for all dimensions is returned.

1.6.15 nodeDisp command

nodeDisp (nodelag, dof=-1)
Returns the current displacement at a specified node.

nodeTag node tag.
(int)
dof (int) specific dof at the node (1 through ndf), (optional), if no dof is provided, a list of values for
all dofs is returned.

1.6. Output Commands 175

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

1.6.16 nodeEigenvector command

nodeEigenvector (eigenvector, dof=-1)
Returns the eigenvector at a specified node.

nodeTag (int) node tag.

eigenvector | mode number of eigenvector to be returned
(int)
dof (int) specific dof at the node (1 through ndf), (optional), if no dof is provided, a list of values
for all dofs is returned.

1.6.17 nodeMass command

nodeMass (nodelag, dof=-1)
Returns the masss at a specified node.

nodeTag node tag.
(int)
dof (int) specific dof at the node (1 through ndf), (optional), if no dof is provided, a list of values for
all dofs is returned.

1.6.18 nodePressure command

nodePressure (nodelag)
Returns the fluid pressures at a specified node if this is a fluid node.

| nodeTag (int) | node tag.

1.6.19 nodeReaction command

nodeReaction (nodeTag, dof=-1)
Returns the reactions at a specified node. Must call reactions () command before this command.

nodeTag node tag.
(int)
dof (int) specific dof at the node (1 through ndf), (optional), if no dof is provided, a list of values for
all dofs is returned.

1.6.20 nodeResponse command

nodeResponse (nodeTlag, dof, responselD)
Returns the responses at a specified node. Must call responses command before this command.

176 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

nodeTag (int) node tag.
dof (int) specific dof of the response
responseID (int) the id of responses:

* Disp=1

e Vel=2

e Accel =3

¢ IncrDisp =4

¢ IncrDeltaDisp = 5
* Reaction =6

* Unbalance =7

* RayleighForces = 8

1.6.21 nodeVel command

nodeVel (nodelag, dof=-1)
Returns the current velocity at a specified node.

nodeTag node tag.
(int)
dof (int) specific dof at the node (1 through ndf), (optional), if no dof is provided, a list of values for
all dofs is returned.

1.6.22 nodeUnbalance command

nodeUnbalance (nodeTag, dof=-1)
Returns the unbalanced force at a specified node.

nodeTag node tag.
(int)
dof (int) specific dof at the node (1 through ndf), (optional), if no dof is provided, a list of values for
all dofs is returned.

1.6.23 numFact command

numFact ()
Return the number of factorizations.

1.6.24 numlter command

numlter ()
Return the number of iterations.

1.6.25 printA command

printA (’-file’, filename)
print the contents of a FullGeneral system that the integrator creates to the screen or a file if the '-file'

1.6. Output Commands 177

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

option is used. If using a static integrator, the resulting matrix is the stiffness matrix. If a transient integrator, it
will be some combination of mass and stiffness matrices.

’ filename (str) \ name of file to which output is sent, by default, print to the screen. (optional) ‘

1.6.26 printB command

printB (’-file’, filename)
print the right hand side of a FullGeneral system that the integrator creates to the screen or a fileif the ' —-file'
option is used.

] filename (str) \ name of file to which output is sent, by default, print to the screen. (optional) \

1.6.27 printGID command

PrintGID (filename, -append’, ’-eleRange’, startEle, endEle)
Print in GID format.

filename (str) output file name.

'—append’' (str) | append to existing file. (optional)
startEle (int) start element tag. (optional)
endEle (int) end element tag. (optional)

1.6.28 printModel command

printModel (’-file’, filename, -JSON’, ’-node’, ’-flag’, flag, *nodes=[], *eles=[])
This command is used to print output to screen or file.

filename name of file to which output is sent, by default, print to the screen. (optional)
(str)
'—JSON" (str) print to a JSON file. (optional)

'—node" (str) print node information. (optional)

flag (int) integer flag to be sent to the print() method, depending on the node and element type
(optional)

nodes (list | alist of nodes tags to be printed, default is to print all, (optional)

(int))

eles (list (int)) | alist of element tags to be printed, default is to print all, (optional)

Note: This command was called print in Tcl. Since print is a built-in function in Python, it is renamed to
printModel.

1.6.29 record command

record ()
This command is used to cause all the recorders to do a record on the current state of the model.

178 Chapter 1. Author

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

Note: A record is issued after every successfull static or transient analysis step. Sometimes the user may need the
record to be issued on more occasions than this, for example if the user is just looking to record the eigenvectors after

an eigen command or for example the user wishes to include the state of the model at time 0.0 before any analysis has
been completed.

1.6.30 recorder command

recorder (recorderType, *recorderArgs)

This command is used to generate a recorder object which is to monitor what is happening during the analysis
and generate output for the user.

Return:

¢ >0 an integer tag that can be used as a handle on the recorder for the remove recorder commmand.

* -1 recorder command failed if integer -1 returned.

recorderType (str) | recorder type
recorderArgs (list) | alist of recorder arguments

The following contain information about available recorderType:

node recorder command

recorder ('Node’, ’-file’, filename, '-xml’, filename, ’-binary’, filename, ’-tcp’, inetAddress, port, ’-
precision’, nSD=6, ’-timeSeries’, tsTag, ’-time’, ’-dT’, deltaT=0.0, ’-closeOnWrite’, ’-node’,
*nodeTags=[], "-nodeRange’, startNode, endNode, '-region’, regionTag, ’-dof’, *dofs=[], resp-
Type)
The Node recorder type records the response of a number of nodes at every converged step.

1.6. Output Commands 179

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

OpenSeesPy Documentation, Release 1.0.0b1

filename (str)

name of file to which output is sent. file output
is either in xml format ('-xml' option), textual
("-file"' option) or binary ('-binary"' option)
which must pre-exist.

inetAddr (str)

ip address, “xx.xx.xx.xx”, of remote machine to
which data is sent. (optional)

port (int)

port on remote machine awaiting tcp. (optional)

nSD (int)

number of significant digits (optional)

'—time' (str)

using this option places domain time in first entry
of each data line, default is to have time ommitted,
(optional)

'-closeOnWrite"' (str)

using this option will instruct the recorder to invoke
a close on the data handler after every timestep. If
this is a file it will close the file on every step and
then re-open it for the next step. Note, this greatly
slows the execution time, but is useful if you need to
monitor the data during the analysis. (optional)

deltaT (float)

time interval for recording. will record when next
step is deltaT greater than last recorder step. (op-
tional, default: records at every time step)

tsTag (int)

the tag of a previously constructed TimeSeries, re-
sults from node at each time step are added to load
factor from series (optional)

nodeTags (list (int))

list of tags of nodes whose response is being
recorded (optional)

startNode (int)

tag for start node whose response is being recorded
(optional)

endNode (int)

tag for end node whose response is being recorded
(optional)

regionTag (int)

a region tag; to specify all nodes in the previously
defined region. (optional)

dofs (list (int))

the specified dof at the nodes whose response is re-
quested.

resType (list (str))

a string indicating response required. Response
types are given in table below

e 'disp' displacement

e 'vel' velocity

* 'accel' acceleration

* 'incrDisp' incremental displacement

* 'reaction' nodal reaction

* 'eigen 1i' eigenvector for mode i

* 'rayleighForces' damping forces

Note: Only one of '-file', '-xml', '-binary"', '-tcp' will be used. If multiple specified last option is
used.
180 Chapter 1. Author

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

OpenSeesPy Documentation, Release 1.0.0b1

node envelope recorder command

recorder ('EnvelopeNode’, ’-file’, filename, ’-xml’, filename, ’-precision’, nSD=6, ’-timeSeries’, tsTag,
~time’, ’-dT’, deltaT=0.0, ’-closeOnWrite’, ’-node’, *nodeTags=[], ’-nodeRange’, startNode,
endNode, '-region’, regionTag, ’-dof’, *dofs=[], respType)
The EnvelopeNode recorder type records the min, max and absolute max of a number of nodal response quan-

taties.

filename (str) name of file to which output is sent. file output is
either in xml format ('-xml' option), or textual
('-file"' option) which must pre-exist.

nSD (int) number of significant digits (optional)

'—time"' (str) using this option places domain time in first entry
of each data line, default is to have time ommitted,
(optional)

'—-closeOnWrite" (str) using this option will instruct the recorder to invoke

a close on the data handler after every timestep. If
this is a file it will close the file on every step and
then re-open it for the next step. Note, this greatly
slows the execution time, but is useful if you need to
monitor the data during the analysis. (optional)
deltaT (float) time interval for recording. will record when next
step is deltaT greater than last recorder step. (op-
tional, default: records at every time step)

tsTag (int) the tag of a previously constructed TimeSeries, re-
sults from node at each time step are added to load
factor from series (optional)

nodeTags (list (int)) list of tags of nodes whose response is being
recorded (optional)

startNode (int) tag for start node whose response is being recorded
(optional)

endNode (int) tag for end node whose response is being recorded
(optional)

regionTag (int) a region tag; to specify all nodes in the previously
defined region. (optional)

dofs (list (int)) the specified dof at the nodes whose response is re-
quested.

resType (list (str)) a string indicating response required. Response

types are given in table below
e 'disp' displacement
e 'vel' velocity
* 'accel' acceleration
* 'incrDisp' incremental displacement
* 'reaction' nodal reaction
* 'eigen 1i' eigenvector for mode i

element recorder command
recorder (’'Element’, ’-file’, filename, ’-xml’, filename, ’-binary’, filename, ’-precision’, nSD=6, ’-
timeSeries’, tsTag, '-time’, ’-dT’, deltaT=0.0, ’-closeOnWrite’, -ele’, *eleTags=[], -eleRange’,
startEle, endEle, *-region’, regionTag, *args)
The Element recorder type records the response of a number of elements at every converged step. The response

1.6. Output Commands 181

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

OpenSeesPy Documentation, Release 1.0.0b1

recorded is element-dependent and also depends on the arguments which are passed to the setResponse() element

method.

filenanename of file to which output is sent. file output is either in xml format (' -xm1 ' option), textual

(str) ('-file"' option) or binary (' -binary' option) which must pre-exist.

nSD number of significant digits (optional)

(int)

'—time'| using this option places domain time in first entry of each data line, default is to have time

(str) ommitted, (optional)

' —closgOuding thes' option will instruct the recorder to invoke a close on the data handler after every

(str) timestep. If this is a file it will close the file on every step and then re-open it for the next step.
Note, this greatly slows the execution time, but is useful if you need to monitor the data during
the analysis. (optional)

deltaT | time interval for recording. will record when next step is de1taT greater than last recorder step.

(float) (optional, default: records at every time step)

tsTag | the tag of a previously constructed TimeSeries, results from node at each time step are added to

(int) load factor from series (optional)

eleTagg list of tags of elements whose response is being recorded (optional)

(list

(int))

startkElletag for start node whose response is being recorded (optional)

(int)

endEle | tag for end node whose response is being recorded (optional)

(int)

regionTaaregion tag; to specify all nodes in the previously defined region. (optional)

(int)

args arguments which are passed to the setResponse() element method, all arguments must be in string

(list) format even for double and integer numbers because internally the setResponse() element method
only accepts strings.

Note: The setResponse() element method is dependent on the element type, and is described with the e lement ()

Command.

element envelope recorder command

recorder ('EnvelopeElement’, ’-file’, filename, *-xml’, filename, '-binary’, filename, ’-precision’, nSD=6, ’-
timeSeries’, tsTag, '-time’, ’-dT’, deltaT=0.0, ’-closeOnWrite’, -ele’, *eleTags=[], -eleRange’,
startEle, endEle, *-region’, regionTag, *args)
The Envelope Element recorder type records the response of a number of elements at every converged step.
The response recorded is element-dependent and also depends on the arguments which are passed to the setRe-
sponse() element method. When the object is terminated, through the use of a wipe, exit, or remove the object
will output the min, max and absolute max values on 3 seperate lines of the output file for each quantity.

182

Chapter 1. Author

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

OpenSeesPy Documentation, Release 1.0.0b1

filenanjename of file to which output is sent. file output is either in xml format (' —xm1 ' option), textual

(str) ("-file"' option) or binary (' -binary' option) which must pre-exist.

nsD number of significant digits (optional)

(int)

'—time'| using this option places domain time in first entry of each data line, default is to have time

(str) ommitted, (optional)

' —closgOuding this' option will instruct the recorder to invoke a close on the data handler after every

(str) timestep. If this is a file it will close the file on every step and then re-open it for the next step.
Note, this greatly slows the execution time, but is useful if you need to monitor the data during
the analysis. (optional)

deltaT | time interval for recording. will record when next step is deltaT greater than last recorder step.

(float) (optional, default: records at every time step)

tsTag | the tag of a previously constructed TimeSeries, results from node at each time step are added to

(int) load factor from series (optional)

eleTagg list of tags of elements whose response is being recorded (optional)

(list

(int))

startE]jetag for start node whose response is being recorded (optional)

(int)

endEle | tag for end node whose response is being recorded (optional)

(int)

regionTaaregion tag; to specify all nodes in the previously defined region. (optional)

(int)

args arguments which are passed to the setResponse() element method

(list)

Note: The setResponse() element method is dependent on the element type, and is described with the e lement ()

Command.

pvd recorder command

recorder ('PVD’, filename, '-precision’, precision=10, ’-dT’, dT=0.0, *res)
Create a PVD recorder.

filename (str) the name for filename.pvdand filename/ di-

rectory, which must pre-exist.

precisi

on (int) the precision of data. (optional)

dT (float)

the time interval for recording. (optional)

res (list (str)) a list of (str) of responses to be recorded, (optional)

e 'disp’

- 'vel'

- 'accel'

— 'incrDisp'

- 'reaction'
'pressure’
— 'unbalancedLoad'
— 'mass'
'eigen'

1.6. Output Commands 183

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenSeesPy Documentation, Release 1.0.0b1

1.6.31 sectionForce command

sectionForce (eleTag, secNum, dof)
Returns the section force for a beam-column element.

eleTag (int)

element tag.

secNum (int)

section number, i.e. the Gauss integratio number

dof (int)

the dof of the section

1.6.32 sectionDeformation command

sectionDeformation (eleTag, secNum, dof)
Returns the section deformation for a beam-column element.

eleTag (int)

element tag.

secNum (int)

section number, i.e. the Gauss integratio number

dof (int)

the dof of the section

1.6.33 sectionStiffness command

sectionStiffness (eleTag, secNum, dof)
Returns the section stiffness matrix for a beam-column element. A list of values in the row order will be returned.

eleTag (int)

element tag.

secNum (int)

section number, i.e. the Gauss integratio number

dof (int)

the dof of the section

1.6.34 sectionFlexibility command

sectionFlexibility (eleTag, secNum, dof)
Returns the section flexibility matrix for a beam-column element. A list of values in the row order will be

returned.

eleTag (int)

element tag.

secNum (int)

section number, i.e. the Gauss integratio number

dof (int)

the dof of the section

1.6.35 sectionLocation command

sectionLocation (eleTag, secNum)
Returns the locations of integration points of a section for a beam-column element.

eleTag (int)

element tag.

secNum (int)

section number, i.e. the Gauss integration number

184

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

1.6.36 sectionWeight command

sectionWeight (elelag, secNum)
Returns the weights of integration points of a section for a beam-column element.

eleTag (int) | element tag.
secNum (int) | section number, i.e. the Gauss integration number

1.6.37 systemSize command

systemSize ()
Return the size of the system.

1.6.38 testlter command

testIter ()
Returns the number of iterations the convergence test took in the last analysis step

1.6.39 testNorm command

testNorm ()
Returns the norms from the convergence test for the last analysis step.

Note: The size of norms will be equal to the max number of iterations specified. The first test Iter of these will
be non-zero, the remaining ones will be zero.

1.6.40 version command

version ()
Return the current OpenSees version.

1.7 Utility Commands

These commands are used to monitor and change the state of the model.

1.7.1 convertBinaryToText command

convertBinaryToText (inputfile, outputfile)
Convert binary file to text file

inputfile (str) input file name.
outputfile (str) | output file name.

1.7. Utility Commands 185

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenSeesPy Documentation, Release 1.0.0b1

1.7.2 convertTextToBinary command

convertTextToBinary (inputfile, outputfile)
Convert text file to binary file

inputfile (str) input file name.
outputfile (str) | output file name.

1.7.3 database command

database (type, dbName)
Create a database.

type (str) database type:

e 'File' - outputs database into a file

e "MySQL"' - creates a SQL database

* 'BerkeleyDB' - creates a BerkeleyDB
database

dbName (str) database name.

1.7.4 domainChange command

domainChange ()
Mark the domain has changed manually.

1.7.5 InitialStateAnalysis command

InitialStateAnalysis (flag)
Set the initial state analysisto 'on"' or 'off'

] flag (str) \ 'on'or 'off'

1.7.6 loadConst command

loadConst (’-time’, pseudoTime)
This command is used to set the loads constant in the domain and to also set the time in the domain. When
setting the loads constant, the procedure will invoke setL.oadConst() on all LoadPattern objects which exist in
the domain at the time the command is called.

pseudoTime (float) | Time domain is to be set to (optional) |

Note: Load Patterns added afer this command is invoked are not set to constant.

186 Chapter 1. Author

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

1.7.7 modalDamping command

modalDamping (factor)
Set modal damping factor. The eigen () must be called before.

| factor (float) | damping factor.

1.7.8 reactions command

reactions (’-dynamic’, ’-rayleight’)
Calculate the reactions. Call this command before the nodeReaction ().

'—dynamic"' (str) Include dynamic effects.
'-rayleigh' (str) | Include rayleigh damping.

1.7.9 remove command

remove (type, tag)
This commmand is used to remove components from the model.

type type of the object, 'ele', 'loadPattern’', 'parameter', 'node', 'timeSeries’,
(str) 'sp', 'mp"'.
tag (int) | tag of the object

remove (’recorders’)
Remove all recorder objects.

remove (’sp’, nodeTag, dofTag, patternTag)
Remove a sp object based on node

nodeTag (int) node tag
dof (int) dof the sp constrains
patternTag (int) | pattern tag, (optional)

1.7.10 reset command

reset ()
This command is used to set the state of the domain to its original state.

Note: It iterates over all components of the domain telling them to set their state back to the initial state. This is
not always the same as going back to the state of the model after initial model generation, e.g. if elements have been
removed.

1.7.11 restore command

restore (commitlag)
Restore data from database, which should be created through database ().

1.7. Utility Commands 187

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

| commitTag (int) | atag identify the commit

1.7.12 save command

save (commitlag)
Save current state to database, which should be created through database ().

’ commitTag (int) \ a tag identify the commit ‘

1.7.13 setTime command

setTime (pseudoTime)
This command is used to set the time in the Domain.

| pseudoTime (float) | Time domain to be set

1.7.14 setNodeCoord command

setNodeCoord (nodeTag, dim, value)
set the nodal coodinate at the specified dimension.

nodeTag (int)

node tag.

dim (int)

the dimension of the coordinate to be set.

value (float)

coordinate value

1.7.15 setNodeDisp command

setNodeDisp (nodeTag, dim, value, ’-commit’)

set the nodal displacement at the specified dimension.

nodeTag (int)

node tag.

dim (int)

the dimension of the dispinate to be set.

value (float)

displacement value

'—commit "' (str)

commit nodal state. (optional)

1.7.16 setNodeVel command

setNodeVel (nodeTag, dim, value, ’-commit’)
set the nodal velocity at the specified dimension.

nodeTag (int)

node tag.

dim (int)

the dimension of the velinate to be set.

value (float)

velocity value

'—commit ' (str)

commit nodal state. (optional)

188

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

OpenSeesPy Documentation, Release 1.0.0b1

1.7.17 setNodeAccel command

setNodeAccel (nodelag, dim, value, ’-commit’)
set the nodal acceleration at the specified dimension.

nodeTag (int) node tag.

dim (in0)

the dimension of the accelinate to be set.

value (float) acceleration value

'—commit ' (str) | commit nodal state. (optional)

1.7.18 setPrecision command

setPrecision (precision)
Set the precision for screen output.

| precision (int) | the precision number. |

1.7.19 setElementRayleighDampingFactors command

setElementRayleighDampingFactors (eleTag, alphaM, betaK, betaKO0, betaKc)
Set the rayleigh () damping for an element.

eleTag (int)

element tag

alphaM (float)

factor applied to elements or nodes mass matrix

betakK (float)

factor applied to elements current stiffness matrix.

betaKO0 (float)

factor applied to elements initial stiffness matrix.

betaKc (float)

factor applied to elements committed stiffness matrix.

1.7.20 start command

start ()
Start the timer

1.7.21 stop command

stop ()

Stop the timer and print timing information.

1.7.22 stripXML command

stripXML (inputml, outputdata, outputxml)
Strip a xml file to a data file and a descriptive file.

inputxml (str) input xml file name.

outputdata (str) | output data file name.

outputxml (str) output xml file name.

1.7. Utility Commands

189

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenSeesPy Documentation, Release 1.0.0b1

1.7.23 updateElementDomain command

updateElementDomain ()
Update elements in the domain.

1.7.24 wipe command
wipe ()

This command is used to destroy all constructed objects, i.e. all components of the model, all components of
the analysis and all recorders.

This command is used to start over without having to exit and restart the interpreter. It causes all elements,
nodes, constraints, loads to be removed from the domain. In addition it deletes all recorders, analysis objects
and all material objects created by the model builder.

1.7.25 wipeAnalysis command
wipeAnalysis ()

This command is used to destroy all components of the Analysis object, i.e. any objects created with system,
numberer, constraints, integrator, algorithm, and analysis commands.

1.8 FSI Commands

These commands are related to the Fluid-Structure Interaction analysis in OpenSees.

1.8.1 mesh command

mesh (type, tag, *args)
Create a mesh object. See below for available mesh types.

line mesh

mesh (’line’, tag, numnodes, *ndtags, id, ndf, meshsize, eleType=", *eleArgs=[])
Create a line mesh object.

190 Chapter 1. Author

OpenSeesPy Documentation, Release 1.0.0b1

tag (int)

mesh tag.

numnodes (int)

number of nodes for defining consective lines.

ndtags (list (int))

the node tags

1d (int)

mesh id. Meshes with same id are considered as
same structure of fluid identity.

e 1id=0: notin FSI

e 1d>0: structure

e 1d<0: fluid

ndf (int)

ndf for nodes to be created.

meshsize (float)

mesh size.

eleType (str)

the type of the element, (optional)
* 'elasticBeamColumn'
¢ 'forceBeamColumn'
¢ 'dispBeamColumn'
if no type is given, only nodes are created

eleArgs (list)

a list of element arguments. (optional)

triangular mesh

mesh ('tri’, tag, numlines, *ltags, id, ndf, meshsize, eleType=", *eleArgs=[])
Create a triangular mesh object.

tag (int)

mesh tag.

numlines (int)

number of lines (/ine mesh) for defining a polygon.

1tags (list (int))

the line mesh tags

1d (i)

mesh id. Meshes with same id are considered as
same structure of fluid identity.

e 1id=0: notin FSI

e id>0: structure

e id<0: fluid

ndf (int)

ndf for nodes to be created.

meshsize (float)

mesh size.

eleType (str)

the element type, (optional)
¢ 'PFEMElement2DBubble’
e 'PFEMElement2DQuasi’
e '"tri3l"
if no type is given, only nodes are created

eleArgs (list)

a list of element arguments. (optional)

particle mesh

mesh ('part’, tag, type, *pArgs, eleType=", *eleArgs=[], -vel’, *vel0, ’-pressure’, p0)
Create a particle mesh which is used for background mesh.

1.8. FSI Commands 191

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

OpenSeesPy Documentation, Release 1.0.0b1

tag (int) mesh tag.

type (str) type of the mesh, 'quad', 'tri', 'line',
'point'’

pArgs (list (float)) coordinates of points defining the mesh region

e 'quad': [x1,yl, x2,y2, X3, y3, x4, y4]
e 'tri':[xl,yl, x2,y2,x3,y3]

e 'line': [x1,yl, x2,y2]

e 'point': [x1,yl]

eleType (str) the element type, (optional)
e 'PFEMElement2DBubble’
e 'PFEMElement2DQuasi'’

e 'tri3l'
if no type is given, only nodes are created
eleArgs (list) a list of element arguments. (optional)
vel0 (list (float)) a list of initial velocities. (optional)
pO0 (float) initial pressure. (optional)
1.8.2 remesh command
remesh (alpha=-1.0)
e a > 0 for updating moving mesh.
* «a < 0 for updating background mesh.
alpha (float) Parameter for the o method to construct a mesh from

the node cloud of moving meshes. (optional)
* a = 0: no elements are created
* large o : all elements in the convex hull are
created
* 1.0 < a < 2.0 : usually gives a good shape

1.8.3 PFEM integrator

integrator ('PFEM’)
Create a PFEM Integrator.

1.8.4 PFEM SOE

system ('PFEM’, ’-compressible’)
Create a incompressible PFEM system of equations using the Umfpack solver

—compressible \ Solve using a quasi-incompressible formulation. (optional) \

192 Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

1.8.5 PFEM test

test ('PFEM’, tolv, tolp, tolrv, tolrp, tolrelv, tolrelp, iter, maxincr, pFlag=0, nType=2)
Create a PFEM test, which check both increments and residual for velocities and pressures.

tolv (float) Tolerance for velocity increments

tolp (float) Tolerance for pressure increments

tolrv (float) Tolerance for velocity residual

tolrp (float) Tolerance for pressure residual

tolrv (float) Tolerance for relative velocity increments
tolrp (float) Tolerance for relative pressure increments
iter (int) Max number of iterations to check
maxincr (int) Max times for error increasing

pFlag (int) Print flag (optional):

* 0 print nothing.

e 1 print information on norms each time
test () is invoked.

e 2 print information on norms and number of it-
erations at end of successful test.

* 4 at each step it will print the norms and also
the AU and R(U) vectors.

5 if it fails to converge at end of numIter it
will print an error message but return a suc-
cessfull test.

nType (int) Type of norm, (0 = max-norm, 1 = I-norm, 2 = 2-
norm). (optional)

1.8.6 PFEM analysis

analysis ('PFEM’, dtmax, dtmin, gravity, ratio=0.5)
Create a OpenSees PFEMAnalysis object.

dtmax (float) Maximum time steps.

dtmin (float) Mimimum time steps.

gravity (float) | Gravity acceleration used to move isolated particles.

ratio (float) The ratio to reduce time steps if it was not converged. (optional)

1.9 Sensitivity Commands

These commands are for sensitivity analysis in OpenSees.

1.9.1 computeGradients command

computeGradients ()
This command is used to perform a sensitivity analysis. If the user wants to call this command, then the
' —computeByCommand"' should be set in the sensitivityAlgorithm command.

1.9. Sensitivity Commands 193

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

OpenSeesPy Documentation, Release 1.0.0b1

1.9.2 sensitivityAlgorithm command

sensitivityAlgorithm (fype)
This command is used to create a sensitivity algorithm.

type (str) the type of the sensitivity algorithm,

e '—compuateAtEachStep' automatically
compute at the end of each step

e '—compuateByCommand' compute by
calling computeGradients.

1.9.3 sensNodeDisp command

sensNodeDisp (nodelag, dof, paramlag)
Returns the current displacement sensitivity to a parameter at a specified node.

nodeTag (int) node tag
dof (int) specific dof at the node (1 through ndf)
paramTag (int) | parameter tag

1.9.4 sensNodeVel command

sensNodeVel (nodeTag, dof, paramTag)
Returns the current velocity sensitivity to a parameter at a specified node.

nodeTag (int) node tag
dof (int) specific dof at the node (1 through ndf)
paramTag (int) | parameter tag

1.9.5 sensNodeAccel command

sensNodeAccel (nodelag, dof, paramTag)
Returns the current acceleration sensitivity to a parameter at a specified node.

nodeTag (int) node tag
dof (int) specific dof at the node (1 through ndf)
paramTag (int) | parameter tag

1.9.6 sensLambda command

sensLambda (patternTag, paramTag)
Returns the current load factor sensitivity to a parameter in a load pattern.

patternTag (int) | load pattern tag
paramTag (int) parameter tag

194 Chapter 1. Author

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

1.9.7 sensSectionForce command

sensSectionForce (eleTag[, secNum], dof, paramTag)
Returns the current section force sensitivity to a parameter at a specified element and section.

eleTag (int)

element tag

secNum (int)

section number (optional)

dof (int)

specific dof at the element (1 through element force ndf)

paramTag (int)

parameter tag

1.9.8 sensNodePressure command

sensNodePressure (nodelag, paramlag)
Returns the current pressure sensitivity to a parameter at a specified node.

nodeTag (int) node tag

paramTag (int) | parameter tag

1.10 Reliability Commands

These commands are for reliability analysis in OpenSees.

1.10.1 randomVariable command

randomVariable (fag, dist, -mean’, mean, ’-stdv’, stdv, ’-startPoint’, startPoint, ’-parameters’, *params)

Create a random variable with user specified distribution

1.10. Reliability Commands

195

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenSeesPy Documentation, Release 1.0.0b1

tag (int)

random variable tag

dist (str)

random variable distribution
e 'normal'
e '"lognormal'’
¢ 'gamma'
* 'shiftedExponential'
¢ 'shiftedRayleigh'
* 'exponential'
e 'rayleigh'
e 'uniform'
¢ 'beta'
* 'typellLargestValue'
e 'typelSmallestValue'
e '"type2lLargestValue'
e '"type3SmallestValue'
e 'chiSquare'
e '"gumbel'
* 'weibull'
e 'laplace'
e 'pareto'

mean (float)

mean value

stdv (float)

standard deviation

startPoint (float)

starting point of the distribution

params (list (int))

a list of parameter tags

1.11 Structural Examples

1.11.1 Elastic Truss Analysis

1. The source code is shown below, which can be downloaded here.

2. Change the line 2 below to set the right path where the OpenSeesPy library located.

3. Run the source code in your favorate Python program and should see Passed! in the results.

import sys

sys.path.append('/path/to/OpenSeesPy"')

from opensees import =«

import numpy as np
import matplotlib.pyplot as plt

remove existing model
wipe ()

set modelbuilder
model ('basic', '-ndm', 2, '-ndf',

2)

(continues on next page)

196

Chapter 1. Author

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

create nodes

node (1, 0.0, 0.0)
node (2, 144.0, 0.0)
node (3, 168.0, 0.0)
node (4, 72.0, 96.0)

set boundary condition
fix(1, 1, 1)
fix (2, 1, 1)
fix (3, 1, 1)

define materials
uniaxialMaterial ("Elastic", 1, 3000.0)

define elements

element ("Truss",1,1,4,10.0,1)
element ("Truss",2,2,4,5.0,1)
element ("Truss",3,3,4,5.0,1)

create TimeSeries
timeSeries ("Linear", 1)

create a plain load pattern
pattern("Plain", 1, 1)

Create the nodal load - command: load nodeID xForce yForce
load (4, 100.0, -50.0)

create SOE
system ("BandSPD")

create DOF number
numberer ("RCM")

create constraint handler
constraints ("Plain")

create integrator
integrator ("LoadControl"”, 1.0)

create algorithm
algorithm("Linear")

create analysis object
analysis("Static")

perform the analysis
analyze (1)

ux = nodeDisp(4,1)
uy = nodeDisp (4, 2)
if abs (ux-0.53009277713228375450)<1le-12 and abs (uy+0.17789363846931768864)<le-12:

(continues on next page)

1.11. Structural Examples 197

74
75

76

L = N S S v N

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

print ("Passed!")
else:
print ("Failed!™")

1.11.2 Nonlinear Truss Analysis

1. The source code is shown below, which can be downloaded here.

2. Change the line 2 below to set the right path where the OpenSeesPy library located.

3. Make sure the numpy and matplotlib packages are installed in your Python distribution.

4. Run the source code in your favorite Python program and should see

160

140 +

120 +

100 +

80 +

Horizontal Load

60

40

20+

T T T
0.0 0.2 0.4 0.6 0.8 1.0
Horizontal Displacement

1.2

1.4

import sys
sys.path.append('/path/to/OpenSeesPy')
from opensees import x

import numpy as np

import matplotlib.pyplot as plt

(continues on next page)

198

Chapter 1. Author

http://www.numpy.org/
https://matplotlib.org/

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

60

61

62

63

64

65

66

67

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

set modelbuilder
wipe ()

model ('basic', '-ndm', 2, '-ndf', 2)
variables

A= 4.0

E = 29000.0

alpha = 0.05

sY = 36.0

udisp = 2.5

Nsteps = 1000

Px = 160.0

Py = 0.0

create nodes

node (1, 0.0, 0.0)
node (2, 72.0, 0.0)
node (3, 168.0, 0.0)
node (4, 48.0, 144.0)

set boundary condition
fix(1, 1, 1)
fix(2, 1, 1)
fix(3, 1, 1)

define materials
uniaxialMaterial ("Hardening", 1, E, sY,
define elements

element ("Truss",1,1,4,A,1)
element ("Truss",2,2,4,A,1)
element ("Truss",3,3,4,A,1)

create TimeSeries
timeSeries ("Linear", 1)

create a plain load pattern
pattern("Plain", 1, 1)

Create the nodal load
load (4, Px, Py)

create SOE
system("ProfileSPD")

create DOF number
numberer ("Plain")

create constraint handler
constraints ("Plain")

create integrator

integrator ("LoadControl", 1.0/Nsteps)

0.

0,

alpha/ (1-alpha) «E)

(continues on next page)

1.11. Structural Examples

199

68

69

70

71

72

3

74

75

76

77

78

79

90

91

92

93

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

create algorithm
algorithm ("Newton")

create test

test ("NormUnbalance', 1le-8, 10)
create analysis object
analysis("Static")

perform the analysis

data = np.zeros ((Nsteps+l,2))

for j in range (Nsteps) :
analyze (1)
data[j+1,0]
data[j+1,1]

= nodeDisp(4,1)
getLoadFactor (1) xPx

plt.plot (datal[:,0], datal:,1])
plt.xlabel ('"Horizontal Displacement')
plt.ylabel ('Horizontal Load')
plt.show ()

1.11.3 Portal Frame 2d Analysis

1. The source code is shown below, which can be downloaded here.

2. Change the line 2 below to set the right path where the OpenSeesPy library located.

3. Run the source code in your favorate Python program and should see results below

Period Comparisons:

Period OpenSees SAP2000 SeismoStruct

1 1.27321 1.2732 1.2732

2 0.43128 0.4313 0.4313

3 0.24204 0.2420 0.2420

4 0.16018 0.1602 0.1602

5 0.11899 0.1190 0.1190

6 0.09506 0.0951 0.0951

7 0.07951 0.0795 0.0795

tSatic Analysis Result Comparisons:

Parameter OpenSees SAP2000 SeismoStruct
Disp Top 1.451 1.45 1.45
Axial Force Bottom Left 69.987 69.99 70.01
Moment Bottom Left 2324.677 2324.68 2324.71

PASSED Verification Test PortalFrame2d.py

import sys

(continues on next page)

200

Chapter 1. Author

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

sys.path.append('path/to/directory/of/pyd/file")

from opensees import =
from math import asin, sqgrt

Two dimensional Frame: Eigenvalue & Static Loads

REFERENCES:

used 1in verification by SAP2000:

SAP2000 Integrated Finite Element Analysis and Design of Structures, Verification,,
—~Manual,

Computers and Structures, 1997. Example 1.

and seismo-struct (Example 10)

SeismoStruct, Verification Report For Version 6, 2012. Example 11.

set some properties
wipe ()

model ('Basic', '-ndm', 2)
properties

units kip, ft

numBay = 2
numFloor

Il
-

bayWidth = 360.0
storyHeights = [162.0, 162.0, 156.0, 156.0, 156.0, 156.0, 156.0]

E = 29500.0
massX = 0.49

M= 0.

coordTransf = "Linear" # Linear, PDelta, Corotational

massType = "-1Mass" # —-1Mass, -cMass

beams = ['W24X160', 'W24X160', 'W24X130', 'W24X130', 'W24X110', 'W24X110', 'W24X110']

eColumn = ['W14X246', 'W1l4X246', 'Wl4X246', 'Wl4X211l', 'W1l4X211l', 'Wl4X1l76', 'W1l4X1l76

']

iColumn = ['W14X287', 'W14X287', 'W14X287', 'W1l4X246', 'W1l4X246', 'W14X211', 'W14x211

"]

columns = [eColumn, iColumn, eColumn]

WSection = {
'wl4x176': [51.7, 2150.],
'W14x211': [62.1, 2670.],
'Wl4x246': [72.3, 3230.],
'W14x287': [84.4, 3910.],
'W24xX110': [32.5, 3330.],
'W24X130': [38.3, 4020.],
'W24X160': [47.1, 5120.]

~

nodeTag = 1

(continues on next page)

1.11. Structural Examples 201

57
58
59
60
61
62
63
64
65

66

67
68
69
70
71
72
73
74
75
76
77
78

79

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

procedure to read
def ElasticBeamColumn (eleTag,
found = 0

iNode, JjNode, sectType,

prop = WSection[sectType]

A = propl[0]

I = propl[l]

element ('elasticBeamColumn', iNode,

eleTag, jNode,

— massType)

add the nodes

— floor at a time

yLoc = 0.

for j in range (0, numFloor + 1):

xLoc = 0.

for i in range (0, numBay + 1):
node (nodeTag, xLoc, yLoc)
xLoc += bayWidth
nodeTag += 1

if j < numFloor:
storyHeight = storyHeights[7j]
yLoc += storyHeight

fix first floor
fix(l, 1, 1, 1)
fix(2, 1, 1, 1)
fix (3, 1, 1, 1)

rigid floor constraint & masses

nodeTagR = 5

nodeTag = 4

for j in range (1,
for i in range (0,

numFloor + 1):
numBay + 1):

if nodeTag != nodeTagR:
equalDOF (nodeTagR,
else:
mass (nodeTagR,

nodeTag, 1)

massX, 1.0e-10, 1.0e-10)

nodeTag += 1
nodeTagR += numBay + 1

add the columns

add column element
geomTransf (coordTransf, 1)
eleTag = 1

for j in range (0, numBay + 1):
endl =
end2 =

J o+ 1
endl + numBay + 1

E,

A, E,

transfTag,

I,

M, massType) :

transfTag, '-mass', M,

(continues on next page)

202

Chapter 1. Author

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

thisColumn = columns/[j]

for i in range (0, numFloor):
secType = thisColumn([i]
ElasticBeamColumn (eleTag,
endl = end2
end2 += numBay + 1
eleTag += 1

endl, end2,

add beam elements
for j in range(l, numFloor + 1):
endl = (numBay + 1) = j + 1
end2 = endl + 1
secType = beams[] — 1]
for i in range (0, numBay) :
ElasticBeamColumn (eleTag,
endl = end2
end2 = endl + 1
eleTag += 1

endl, end2,

calculate eigenvalues & print results

secType, E, 1, M, massType)

secType, E, 1, M, massType)

numEigen = 7

eigenValues = eigen (numEigen)
PI = 2 % asin(1.0)

#

apply loads for static analysis & perform analysis
#

timeSeries ('Linear', 1)
pattern('Plain', 1, 1)

load (22, 20.0, 0., 0.)

load (19, 15.0, 0., 0.)

load (16, 12.5, 0., 0.)

load (13, 10.0, 0., 0.)

load (10, 7.5, 0., 0.)

load(7, 5.0, 0., 0.)

load(4, 2.5, 0., 0.)

4

integrator ('LoadControl', 1.0)
algorithm('Linear")
analysis('Static')

analyze (1)

determine PASS/FAILURE of test
ok = 0

#
print pretty output of comparisons
#

SAP2000 SeismoStruct
comparisonResults = [[1.2732, 0.4313, 0.2420, 0.1602, 0.1190, 0.0951, 0.0795],
[1.2732, 0.4313, 0.2420, 0.1602, 0.1190, 0.0951, 0.0795]]
print ("\n\nPeriod Comparisons:")
print (' {:>10}{:>15}{:>15}{:>15}"'.format ('Period', 'OpenSees', 'SAP2000', 'SeismoStruct
‘—>'))

(continues on next page)

1.11. Structural Examples

203

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

formatString {%$10s%$15.5f%15.41f%15.4f})
for i in range (0, numEigen) :

lamb = eigenValues[i]

period = 2 « PI / sqgrt(lamb)

print (' {:>10}{:>15.5f}{: S5.4f){:>15.47£)" format (1 + 1, period,
—comparisonResults[0][1i], comparisonResults[1l][i]))
resultOther = comparisonResults|[0] [1]
if abs(period - resultOther) > 9.99e-5:
ok - 1

print table of comparision

Parameter SAP2000 SeismoStruct

comparisonResults = [["Disp Top", "Axial Force Bottom Left", "Moment Bottom Left"],
[1.45076, 69.99, 2324.68],
[1.451, 70.01, 2324.711]]

tolerances = [9.99e-6, 9.99e-3, 9.99e-3]

print ("\n\nSatic Analysis Result Comparisons:")
print (' {:>30}{:>15}{:>15}{:>15}"'.format ('Parameter', 'OpenSees', 'SAP2000',
—'SeismoStruct'))

for i in range(3):

response = eleResponse(l, 'forces')
if i ==
result = nodeDisp (22, 1)
elif 1 ==
result = abs(response[l])
else:
result = response([2]
print (" {:>30)}{:>15.3F){:>15.2f){:>15.2f}".format (comparisonResults[0][i],
result,
comparisonResults[1][1],
comparisonResults[2][1]))
resultOther = comparisonResults[1][1]
tol = tolerances|[1]
if abs(result - resultOther) > tol:
ok - 1

print ("failed-> ", i, abs(result - resultOther), tol)

if ok ==

print ("PASSED Verification Test PortalFrame2d.py \n\n")
else:

print ("FAILED Verification Test PortalFrame2d.py \n\n")

1.11.4 Moment Curvature Analysis

1. The source code is shown below, which can be downloaded here.
2. Change the line 2 below to set the right path where the OpenSeesPy library located.

3. Run the source code in your favorate Python program and should see results below

Start MomentCurvature.py example
Estimated yield curvature: 0.000126984126984127

(continues on next page)

204 Chapter 1. Author

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

Passed!

import sys
sys.path.append('path')
from opensees import =«

def MomentCurvature (secTag, axialload, maxK, numIncr=100) :

Define two nodes at (0,0)
node (1, 0.0, 0.0)
node (2, 0.0, 0.0)

Fix all degrees of freedom except axial and bending
fix(1, 1, 1, 1)
fix(2, 0, 1, 0)

Define element
tag ndI ndJd secTag
element ('zeroLengthSection', 1, 1, 2, secTaqg)

Define constant axial load
timeSeries ('Constant', 1)
pattern('Plain', 1, 1)

load (2, axialLoad, 0.0, 0.0)

Define analysis parameters
integrator ('LoadControl', 0.0)
system('SparseGeneral', '-piv')
test ('NormUnbalance', 1le-9, 10)
numberer ('Plain')
constraints('Plain')
algorithm('Newton")
analysis('Static")

Do one analysis for constant axial load
analyze (1)

Define reference moment
timeSeries ('Linear', 2)
pattern('Plain', 2, 2)
load(2, 0.0, 0.0, 1.0)

Compute curvature increment
dK = maxK / numIncr

Use displacement control at node 2 for section analysis
integrator ('DisplacementControl', 2,3,dK,1,dK,dK)

Do the section analysis
analyze (numIncr)

wipe ()
print ("Start MomentCurvature.py example")

(continues on next page)

1.11. Structural Examples 205

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

Define model builder

model ('basic', '-ndm', 2, '-ndf', 3)

Define materials for nonlinear columns

CONCRETE tag f'c ecO f'cu ecu
Core concrete (confined)

uniaxialMaterial ('Concrete0Ol1',1, -6.0, -0.004, -5.0, -0.014)

Cover concrete (unconfined)
uniaxialMaterial ('Concrete01',2, -5.0, -0.002, 0.0, -0.006)

STEEL

Reinforcing steel

fy = 60.0 # Yield stress

E = 30000.0 # Young's modulus

tag fy EO b

uniaxialMaterial ('SteelOl', 3, fy, E, 0.01)
Define cross—-section for nonlinear columns
set some paramaters

colwidth = 15

colDepth = 24

As = 0.60; # area of no. 7 bars

some variables derived from the parameters

vyl colDepth/2.0
z1 colWidth/2.0

section('Fiber', 1)

Create the concrete core fibers
patch('rect',1,10,1 ,cover-yl, cover-zl, yl-cover, zl-cover)

Create the concrete cover fibers (top, bottom, left, right)
patch('rect',2,10,1 ,-yl, zl-cover, yl, zl)
patch('rect',2,10,1 ,-y1l, -z1, yl, cover-zl)
patch('rect',2,2,1 ,-yl, cover-zl, cover-yl, zl-cover)
patch('rect',2,2,1 ,yl-cover, cover-zl, yl, zl-cover)

Create the reinforcing fibers (left, middle, right)

layer ('straight', 3, 3, As, yl-cover, zl-cover, yl-cover, cover-zl)
layer ('straight', 3, 2, As, 0.0 , zl-cover, 0.0 , cover-zl)
layer ('straight', 3, 3, As, cover-yl, zl-cover, cover-yl, cover-zl)

Estimate yield curvature

(Assuming no axial load and only top and bottom steel)
d —— from cover to rebar

d = colDepth-cover

steel yield strain

(continues on next page)

206 Chapter 1. Author

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

epsy = fy/E
Ky = epsy/ (0.7xd)

Print estimate to standard output
print ("Estimated yield curvature: ", Ky)

Set axial load
P = -180.0

Target ductility for analysis
mu = 15.0

Number of analysis increments
numIncr = 100

Call the section analysis procedure
MomentCurvature(l, P, Ky*mu, numIncr)

results = open('results.out', 'a+')

u = nodeDisp (2, 3)

if abs(u-0.00190476190476190541)<1le-12:
results.write ('PASSED : MomentCurvature.py\n');
print ("Passed!")

else:
results.write ('FAILED : MomentCurvature.py\n');
print ("Failed!")

results.close ()

1.11.5 Reinforced Concrete Frame Gravity Analysis

1. The source code is shown below, which can be downloaded here.
2. Change the line 4 below to set the right path where the OpenSeesPy library located.

3. Run the source code in your favorate Python program and should see Passed! in the results.

print (" == == ===")
import sys

sys.path.append('/scratch/opensees/SRC/interpreter')
from opensees import »

print ("Starting RCFrameGravity example")

Create ModelBuilder (with two-dimensions and 3 DOF/node)
model ('basic', '-ndm', 2, '-ndf', 3)

Create nodes

Set parameters for overall model geometry

(continues on next page)

1.11. Structural Examples 207

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

width = 360.0
height = 144.0

Create nodes
tag, X, Y
node (1, 0.0, 0.0)

node (2, width, 0.0)

node (3, 0.0, height)

node (4, width, height)

Fix supports at base of columns
tag, DX, DY, RZ

fix (1, 1, 1, 1)

fix(2, 1, 1, 1)

Define materials for nonlinear columns

CONCRETE tag f'c ecO f'cu ecu
Core concrete (confined)
uniaxialMaterial ('Concrete0Ol', 1, -6.0, -0.004, -5.0, -0.014)

Cover concrete (unconfined)
uniaxialMaterial ('Concrete0Ol', 2, -5.0, -0.002, 0.0, -0.006)

STEEL

Reinforcing steel

fy = 60.0; # Yield stress

E = 30000.0; # Young's modulus

tag fy EO b
uniaxialMaterial ('SteelOl', 3, fy, E, 0.01)

Define cross-section for nonlinear columns
some parameters
colwidth = 15

colDepth = 24

cover = 1.5
As = 0.60 # area of no. 7 bars

some variables derived from the parameters
yl = colDepth / 2.0
z1l = colWidth / 2.0

section('Fiber', 1)

Create the concrete core fibers
patch('rect', 1, 10, 1, cover - yl, cover - zl, yl - cover, zl - cover)

Create the concrete cover fibers (top, bottom, left, right)
patch('rect', 2, 10, 1, -yl, zl - cover, yl, zl)

patch('rect', 2, 10, 1, -yl1l, -z1, yl, cover - zl)
patch('rect', 2, 2, 1, -yl, cover - zl1l, cover - yl, zl - cover)
patch('rect', 2, 2, 1, yl - cover, cover - zl, yl, z1l - cover)

Create the reinforcing fibers (left, middle, right)

(continues on next page)

208 Chapter 1. Author

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

9%

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

layer ('straight', 3, 3, As, yl - cover, zl - cover, yl - cover, cover - zl)
layer('straight', 3, 2, As, 0.0, z1 - cover, 0.0, cover - zl)
layer ('straight', 3, 3, As, cover - yl, zl - cover, cover - yl, cover - zl)

Define column elements

Geometry of column elements
tag

geomTransf ('PDelta’', 1)

Number of integration points along length of element
np = 5

Lobatto integratoin
beamIntegration('Lobatto', 1, 1, np)

Create the coulumns using Beam-column elements

e tag ndI ndJ transfTag integrationTag
eleType = 'forceBeamColumn'

element (eleType, 1, 1, 3, 1, 1)

element (eleType, 2, 2, 4, 1, 1)

Define beam elment

Geometry of column elements
tag
geomTransf ('Linear', 2)

Create the beam element
tag, ndI, ndJ, A, E, Iz, transfTag
element ('elasticBeamColumn', 3, 3, 4, 360.0, 4030.0, 8640.0, 2)

Define gravity loads

a parameter for the axial load
P = 180.0; # 10% of axial capacity of columns

Create a Plain load pattern with a Linear TimeSeries
timeSeries ('Linear', 1)
pattern('Plain', 1, 1)

Create nodal loads at nodes 3 & 4
nd FX, FY, MZ
load (3, 0.0, -pP, 0.0)
load (4, 0.0, -P, 0.0)

Start of analysis generation

(continues on next page)

1.11. Structural Examples 209

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

Create the system of equation, a sparse solver with partial pivoting
system('BandGeneral')

Create the constraint handler, the transformation method
constraints ('Transformation’')

Create the DOF numberer, the reverse Cuthill-McKee algorithm
numberer ('RCM")

Create the convergence test, the norm of the residual with a tolerance of

le—-12 and a max number of iterations of 10
test ('NormDispIncr', 1.0e-12, 10, 3)

Create the solution algorithm, a Newton-Raphson algorithm
algorithm('Newton')

Create the integration scheme, the LoadControl scheme using steps of
integrator ('LoadControl', 0.1)

Create the analysis object
analysis ('Static')

0.1

perform the gravity load analysis, requires 10 steps to reach the load level

analyze (10)

Print out the state of nodes 3 and 4
print node 3 4

Print out the state of element 1
print ele 1

u3 = nodeDisp (3, 2)
u4 = nodeDisp (4, 2)
results = open('results.out', 'a+')

if abs(u3 + 0.0183736) < le-6 and abs(u4 + 0.0183736) < le-6:
results.write ('PASSED : RCFrameGravity.py\n')
print ("Passed!")
else:
results.write ('FAILED : RCFrameGravity.py\n')
print ("Failed!™")

results.close ()

print (" ===")

210

Chapter 1. Author

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

OpenSeesPy Documentation, Release 1.0.0b1

1.11.6 Reinforced Concrete Frame Pushover Analysis

1. The source code is shown below, which can be downloaded here.
2. The file for gravity analysis is also needed :here.
3. Change the line 9 below to set the right path where the OpenSeesPy library located.

4. Run the source code in your favorate Python program and should see Passed! in the results.

print (" == == ===")
print ("Start RCFramePushover Example")

Units: kips, 1in, sec
#

Written: GLF/MHS/fmk
Date: January 2001
import sys

sys.path.append('/scratch/opensees/SRC/interpreter')
from opensees import x

Do operations of Example3.1 by sourcing in the tcl file
exec (open ('RCFrameGravity.py') .read())
print ("Gravity Analysis Completed")

Set the gravity loads to be constant & reset the time in the domain
loadConst ('-time', 0.0)

Set some parameters
H = 10.0 # Reference lateral load

Set lateral load pattern with a Linear TimeSeries
pattern('Plain', 2, 1)

Create nodal loads at nodes 3 & 4
nd FX FY MZ

load(3, H, 0.0, 0.0)

load (4, H, 0.0, 0.0)

End of additional modelling for lateral loads

(continues on next page)

1.11. Structural Examples 211

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

Set some parameters
dU = 0.1 # Displacement increment

Change the integration scheme to be displacement control
node dof init Jd min max
integrator ('DisplacementControl', 3, 1, du, 1, dU, duU)

Stop the old recorders by destroying them
remove recorders

Create a recorder to monitor nodal displacements
recorder Node —file node32.out —-time -node 3 4 -dof 1 2 3 disp

Create a recorder to monitor element forces in columns
recorder EnvelopeElement —file ele32.out -time -ele 1 2 forces

Set some parameters

maxU = 15.0 # Max displacement
currentDisp = 0.0

ok = 0

test ('NormDispIncr', 1.0e-12, 1000)
algorithm('ModifiedNewton', '—initial')

while ok == 0 and currentDisp < maxU:
ok = analyze (1)
1f the analysis fails try initial tangent iteration
if ok != 0:

print ("modified newton failed")
break

(continues on next page)

212 Chapter 1. Author

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

print "regular newton failed .. lets try an initail stiffness for this step”
test ('NormDispIncr', 1.0e-12, 1000)

algorithm('ModifiedNewton', '—-initial')

ok = analyze (1)

1f ok ==

print "that worked .. back to regular newton"

test ('NormDispIncr', 1.0e-12, 10)

algorithm('Newton')
currentDisp = nodeDisp (3, 1)
results = open('results.out', 'a+')

if ok ==
results.write ('PASSED : RCFramePushover.py\n')
print ("Passed!")

else:
results.write ('FAILED : RCFramePushover.py\n')
print ("Failed!™")

results.close ()

Print the state at node 3
print node 3

1.11.7 Three story steel building with rigid beam-column connections and W-
section

1. The source code is developed by Anurag Upadhyay from University of Utah.
2. The source code is shown below, which can be downloaded here.
3. Change the line 17 below to set the right path where the OpenSeesPy library located.

4. Run the source code in your favorate Python program and should see following plot.

1.11. Structural Examples 213

https://github.com/anurag-upadhay

OpenSeesPy Documentation, Release 1.0.0b1

145.0 ~

128.9

112.8 ~

96.7 1

80.6

64.4

Base Shear (kip)

48.3

32.2 -

16.1 +

0.0 A

T T
0.0 4.5 9.0 13.5 18.0
Top Displacement (inch)

dddazdadaddsdasdtdadasdadadddaddaddddadadddddddddaddddadsddassidi
2D steel frame example.

3 story steel building with rigid beam-column connections.

This script uses W-section command inOpensees to create steel..
.. beam-column fiber sections.

##

By — Anurag Upadhyay, PhD Student, University of Utah.

Date - 08/06/2018
[didaddddasazaasadasasdasaidasatsadatdadatsadataadataddadaddadsdis

print ("=================s==s=s=ss=sSss=sSsssss=s=ss==s==s=ss==s======== ")
print ("Start 2D Steel Frame Example")

import sys

#sys.path.append ('C:/OpenSeesPy ") # for,,
—Windows Computer
sys.path.append ('/home/anurag/OpenSeesPy") # For linux Computer

from opensees import =«
import numpy as np
import matplotlib.pyplot as plt

import os

AnalysisType='Pushover' ; # Pushover Gravity

(continues on next page)

214 Chapter 1. Author

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

##
Start of model generation

##
remove existing model

wipe ()

set modelbuilder
model ('basic', '-ndm', 2, '-ndf', 3)

import math
#HFFHRAAAAAFFHRAARAAFFFEAAAAAFFRRAAAAAFFHRAA

Units and Constants ##########HHF#FH##HH
HERHHAARFAAAAAAFARAAAAFAAAAAAFAAAFAAAAAAFAHA

inch = 1;
kip = 1;
sec = 1;

Dependent units
sg_in = inchxinch;
ksi = kip/sg_in;
ft = 12+inch;

Constants
g = 386.2x1inch/ (sec*sec);
pi = math.acos(-1);

FHAFFAFAAFAAFFFAAFAAFAAFAFFAFAAFFAFAAFFAFAAF
Dimensions
FHAFRFRAFAFRFFAFRFFAFRFFAFRFFAFRFHAFAAH

Dimensions Input
H_story=10.0xft;
W_bayX=16.0xft;
W_bayY_ab=5.0xft+10.0xinch;
W_bayY_bc=8.0xft+4.0xinch;
W_bayY_cd=5.0+xft+10.0xinch;

Calculated dimensions
W_structure=W_bayY_ab+W_bayY_bc+W_bayY_cd;

#HAAFAAAAAAFAFAS
Material
#HARHHAAAAAAFAAAA

Steel02 Material
matTag=1;

matConnAx=2;
matConnRot=3;

Fy=60.0+ksi; # Yield stress

Es=29000.0xksi; # Modulus of Elasticity of Steel
v=0.2; # Poisson's ratio

Gs=Es/ (1+v); # Shear modulus

(continues on next page)

1.11. Structural Examples

215

82

84

85

87

88

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

b=0.10; # Strain hardening ratio
params=[18.0,0.925,0.15] # RO, cR1,cR2
R0=18.0

cR1=0.925

cR2=0.15

al=0.05

a2=1.00

a3=0.05

ad4=1.0

sigInit=0.0

alpha=0.05

uniaxialMaterial ('Steel0O2', matTag, Fy, Es, b, RO, cRl, cR2, al, a2, a3, a4, sigInit)

FEERFAAAAFAAAAFAFS
Sections
FERFRAFAFRFEAFRAEA

colSecTagl=1;
colSecTag2=2;
beamSecTagl=3;
beamSecTag2=4;
beamSecTag3=5;

COMMAND: section('WFSection2d', secTag, matTag, d, tw, bf, tf, Nfw, Nff)

section ('WESection2d', colSecTagl, matTag, 10.5+inch, 0.26xinch, 5.77«inch, 0.44xinch,
— 15, 16) # outer Column
section ('WEFSection2d', colSecTag2, matTag, 10.5xinch, 0.26xinch, 5.77xinch, 0.44xinch,
— 15, 16) # Inner Column

section ('WESection2d', beamSecTagl, matTag, 8.3xinch, 0.44xinch, 8.11lxinch, O.
< 685+inch, 15, 15) # outer Beam
section('WESection2d', beamSecTag2, matTag, 8.2+inch, 0.40xinch, 8.0lxinch, O.
—~650+«inch, 15, 15) # Inner Beam
section ('WEFSection2d', beamSecTag3, matTag, 8.0xinch, 0.40%inch, 7.89+inch, O.
—~600+inch, 15, 15) # Inner Beam

Beam size — W10x26

Abeam=7.61+inch+inch;

IbeamY=144.* (inch*+4); # Inertia along horizontal axis
IbeamZ=14.1* (inch*+*4); # inertia along vertical axis

BRB input data
Acore=2.25%1inch;
Aend=10.0+1inch;
LR_BRB=0.55;

HAARAAAAAAAFAAAAAAFAFAAAFAAA
Nodes
HAHAEAAAAAAFAAAAAAAAFAHAAAA

Create All main nodes
node (1, 0.0, 0.0)

node (2, W_bayX, 0.0)
node (3, 2xW_bayX, 0.0)

(continues on next page)

216 Chapter 1. Author

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

node (11,
node (12,
node (13,

0.0, H_story)
W_bayX, H_story)
2xW_bayX, H_story)

node (21,
node (22,
node (23,

0.0, 2+H_story)
W_bayX, 2+H_story)
2*W_bayX, 2+H_story)

node (31,
node (32,
node (33,

0.0, 3xH_story)
W_bayX, 3xH_story)
2xW_bayX, 3+H_story)

Beam Connection nodes

node
node
node
node

1101,
1201,
1202,
1301,

(0.0, H_story)

(W_bayX, H_story)

(W_bayX, H_story)

(2*W_bayX, H_story)
node (2101,

(0.0, 2+xH_story)
node (2201,

(

(

W_bayX, 2xH_story)
W_bayX, 2xH_story)
2+xW_bayX, 2+H_story)

node (2202,
node (2301,

node
node
node
node

3101,
3201,
3202,
3301,

0.0, 3xH_story)
W_bayX, 3%H_story)
W_bayX, 3xH_story)
2*xW_bayX, 3+xH_story)

#A##HAAEAAAAAAS
Constraints

#AFFHAFHAAFEAAS

fix(1, 1, 1, 1)
fix(2, 1, 1, 1)
fix(3, 1, 1, 1)

HAHAAAAAAARFAAAAAAFAFAA
Elements
HAARAAAAAAAFAAAAAAFAAAA

Assign beam-integration tags

ColIntTagl=1;
ColIntTag2=2;
BeamIntTagl=3;
BeamIntTag2=4;
BeamIntTag3=5;

beamIntegration('Lobatto', ColIntTagl, colSecTagl, 4)
beamIntegration ('Lobatto', ColIntTag2, colSecTag2, 4)
beamIntegration ('Lobatto', BeamIntTagl, beamSecTagl, 4)
beamIntegration ('Lobatto', BeamIntTag2, beamSecTag2, 4)
beamIntegration ('Lobatto', BeamIntTag3, beamSecTag3, 4)

Assign geometric transformation

(continues on next page)

1.11. Structural Examples

217

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

ColTransfTag=1
BeamTranfTag=2

geomTransf ('PDelta’', ColTransfTag)
geomTransf ('Linear', BeamTranfTag)

Assign Elements

Add non-linear column elements

element (' forceBeamColumn', 1, 1, 11, ColTransfTag, ColIntTagl, '-mass', 0.0)
element ('forceBeamColumn', 2, 2, 12, ColTransfTag, ColIntTag2, '-mass', 0.0)
element ('forceBeamColumn', 3, 3, 13, ColTransfTag, ColIntTagl, '-mass', 0.0)

element (' forceBeamColumn', 11, 11, 21, ColTransfTag, ColIntTagl, '-mass', 0.0)
element ('forceBeamColumn', 12, 12, 22, ColTransfTag, ColIntTag2, '-mass', 0.0)
element (' forceBeamColumn', 13, 13, 23, ColTransfTag, ColIntTagl, '-mass', 0.0)

element ('forceBeamColumn', 21, 21, 31, ColTransfTag, ColIntTagl, '-mass', 0.0)
element ('forceBeamColumn', 22, 22, 32, ColTransfTag, ColIntTag2, '-mass', 0.0)
element ('forceBeamColumn', 23, 23, 33, ColTransfTag, ColIntTagl, '-mass', 0.0)

#

Add linear main beam elements, along x-axis
#element ('elasticBeamColumn', 101, 1101, 1201, Abeam, Es,
—beamTransfTag, '-mass', 0.0)

element ('forceBeamColumn', 101, 1101, 1201, BeamTranfTag,
element ('forceBeamColumn', 102, 1202, 1301, BeamTranfTag,

element ('forceBeamColumn', 201, 2101, 2201, BeamTranfTag,
element (' forceBeamColumn', 202, 2202, 2301, BeamTranfTag,

element (' forceBeamColumn', 301, 3101, 3201, BeamTranfTag,
element (' forceBeamColumn', 302, 3202, 3301, BeamTranfTag,

Gs, Jbeam, IbeamY, Ibeamz,_,
BeamIntTagl, '-mass', 0.0)
BeamIntTagl, '-mass', 0.0)

BeamIntTag2, '-mass', 0.0)
BeamIntTag2, '-mass', 0.0)

BeamIntTag3, '-mass', 0.0)
BeamIntTag3, '-mass', 0.0)

Assign constraints between beam end nodes and column nodes (RIgid beam column_,

—sconnections)

equalDOF (11, 1101, 1,2,3)
equalDOF (12, 1201, 1,2,3)
equalDOF (12, 1202, 1,2,3)
equalDOF (13, 1301, 1,2,3)

equalDOF (21, 2101, 1,2,3)
equalDOF (22, 2201, 1,2,3)
equalDOF (22, 2202, 1,2,3)
equalDOF (23, 2301, 1,2,3)

equalDOF (31, 3101, 1,2,3)
equalDOF (32, 3201, 1,2,3)
equalDOF (32, 3202, 1,2,3)
equalDOF (33, 3301, 1,2,3)

#H#AAFRAAFRAAFHA
Gravity Load

(continues on next page)

218

Chapter 1. Author

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

#HARFA A AR AAAHAS
create TimeSeries
timeSeries ("Linear", 1)

create a plain load pattern
pattern("Plain", 1, 1)

Create the nodal load

load (11, 0.0, -5.0+kip, 0.0)
load (12, 0.0, -6.0xkip, 0.0)
load (13, 0.0, -5.0xkip, 0.0)

load (21, 0., -5.xkip, 0.0)
load (22, 0., —-6.xkip,0.0)
load (23, 0., —-5.xkip, 0.0)

load (31, 0., —-5.xkip, 0.0)
load (32, 0., —-6.xkip, 0.0)
load (33, 0., -5.xkip, 0.0)

NstepsGrav = 10

system("BandGEN")

numberer ("Plain")

constraints ("Plain")

integrator ("LoadControl", 1.0/NstepsGrav)
algorithm ("Newton™)

test ("NormUnbalance',1le-8, 10)
analysis("Static")

perform the analysis

data = np.zeros((NstepsGrav+l,2))

for j in range (NstepsGrav) :
analyze (1)
data[j+1,0] = nodeDisp(31,2)
datalj+1,1] getLoadFactor (1) x5

loadConst ('-time', 0.0)

print ("Gravity analysis complete")
wipeAnalysis ()
#HA#AFEAHAFEAAAFEAFAAEAF A EAAAA
PUSHOVER ANALYSIS

#tHA# AR AF A AR A EAFAARAF A EAFAA

if (AnalysisType=="Pushover") :

print ("<<<< Running Pushover Analysis >>>>")

(continues on next page)

1.11. Structural Examples 219

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

Create load pattern for pushover analysis
create a plain load pattern
pattern("Plain", 2, 1)

load (11, 1.61, 0.0, 0.0)
load (21, 3.22, 0.0, 0.0)
load (31, 4.83, 0.0, 0.0)

ControlNode=31

ControlDOF=1
MaxDisp=0.15+«H_story
DispIncr=0.1

NstepsPush=int (MaxDisp/DispIncr)

system ("ProfileSPD")

numberer ("Plain")

constraints ("Plain")

integrator ("DisplacementControl",
algorithm ("Newton™)

test ('NormUnbalance',le-8,
analysis("Static")

ControlNode, ControlDOF,

10)
PushDataDir = r'PushoverOut'

if not os.path.exists (PushDataDir) :
os.makedirs (PushDataDir)

recorder ('Node', '—-file', "PushoverOut/Node2React.out",
—~node', 2, '—dof',1l, 'reaction')

recorder ('Node', '-file', "PushoverOut/Node3lDisp.out",
—node', 31, '-dof',1, 'disp'")

recorder ('Element', '—file', "PushoverOut/BeamStress.out",
—~ele', 102, 'section', '4', 'fiber','l', 'stressStrain')

analyze (NstepsPush)

Perform pushover analysis

dataPush = np.zeros((NstepsPush+1,5))

for j in range (NstepsPush) :
analyze (1)
dataPush[j+1,0]
reactions ()
dataPush[j+1,1] =

—nodeReaction (3, 1)

nodeDisp (31,1)

nodeReaction (1, 1)

plt.plot (dataPush[:,0], -dataPush[:,1])
plt.x1im (0, MaxDisp)

plt.xticks (np.linspace (0,MaxDisp, 5, endpoint=True))
plt.yticks (np.linspace (0,
plt.grid(linestyle="dotted")
plt.xlabel ('"Top Displacement (inch) ")
plt.ylabel ('Base Shear (kip)')

plt.show ()

print ("Pushover analysis complete")

+ nodeReaction (2, 1) +

DispIncr)

'-closeOnWrite', '-—

'-closeOnWrite', '-

'-closeOnWrite', '-—

—int (dataPush[NstepsPush,1]), 10, endpoint=True))

(continues on next page)

220

Chapter 1. Author

356 ’

20

21

22

23

24

25

26

27

28

29

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

1.12 Earthquake Examples

1.12.1 Cantilever 2D EQ ground motion with gravity Analysis

1. The source code is shown below, which can be downloaded here.
2. The ground motion data file he re must be put in the same folder.
3. Change the line 5 below to set the right path where the OpenSeesPy library located.

4. Run the source code in your favorate Python program and should see results below

Start cantilever 2D EQ ground motion with gravity example
u2 = -0.07441860465116278
Passed!

print ("===")
print ("Start cantilever 2D EQ ground motion with gravity example")

import sys
sys.path.append('/path/to/direction/of/pyd/file'")
from opensees import x

,,
e

Example 1. cantilever 2D

EQ ground motion with gravity

all units are in kip, inch, second

elasticBeamColumn ELEMENT

Silvia Mazzoni & Frank McKenna, 2006

#

Y

/

2 o

/ /

/ /

/ /

(1) 36"

/ /

/ /

/ /

=1= e >X

#

B SET UP ——
wipe () # clear opensees model
model ('basic', '-ndm', 2, '-ndf', 3) # 2 dimensions, 3 dof per node

file mkdir data # create data directory

(continues on next page)

1.12. Earthquake Examples 221

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67
68

69

70

71

72

73

74

75

76

7

78

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

define GEOMETRY ———— =
nodal coordinates:

node (1, 0., 0.) # node#, X Y

node (2, 0., 432.)

Single point constraints —- Boundary Conditions
fix(1, 1, 1, 1) # node DX DY RZ

nodal masses:
mass (2, 5.18, 0., 0.) # node#, Mx My Mz, Mass=Weight/g.

Define ELEMENTS ———————— oo oo e

define geometric transformation: performs a linear geometric transformation of beam
—stiffness and resisting force from the basic system to the global-coordinate system
geomTransf ('Linear', 1) # associate a tag to transformation

(]

connectivity:
element ('elasticBeamColumn', 1, 1, 2, 3600.0, 3225.0,1080000.0, 1)

define GRAVITY ——————
timeSeries('Linear', 1

)
pattern('Plain', 1, 1,)
load (2, 0., -2000., 0.) # node#, FX FY MZ —— _,
—superstructure-weight
constraints('Plain') # how it handles boundary,,
—conditions
numberer ('Plain') # renumber dof's to minimize band-width,_
— (optimization), 1if you want to
system('BandGeneral') # how to store and solve the system of,
—equations in the analysis
algorithm('Linear") # use Linear algorithm for linear analysis
integrator ('LoadControl', 0.1) # determine the next time step,
—for an analysis, # apply gravity in 10 steps
analysis('Static') # define type of_,
—analysis static or transient
analyze (10) # perform gravity analysis
loadConst ('-time', 0.0) # hold gravity constant and_

—restart time

[
create load pattern
G = 386.0

timeSeries ('Path', 2, '-dt', 0.005, '-filePath', 'A10000.dat', '-factor', G) # define
—acceleration vector from file (dt=0.005 is associated with the input file gm)
pattern('UniformExcitation', 2, 1, '-accel', 2) # define,
—where and how (pattern tag, dof) acceleration is applied

—

set damping based on first eigen mode
freq = eigen('-fullGenLapack', 1)x%x0.5
dampRatio = 0.02

rayleigh(0., 0., 0., 2xdampRatio/freq)

create the analysis
wipeAnalysis () # clear previously-define analysis,,
—parameters

(continues on next page)

222 Chapter 1. Author

90

91

92

93

94

95

96

97

98

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

constraints('Plain') # how it handles boundary conditions

numberer ('Plain') # renumber dof's to minimize band-width (optimization), 1if you,,
—want to

system('BandGeneral') # how to store and solve the system of equations in the analysis
algorithm('Linear") # use Linear algorithm for linear analysis

integrator ('Newmark', 0.5, 0.25) # determine the next time step for an analysis
analysis('Transient') # define type of analysis: time-dependent

analyze (3995, 0.01) # apply 3995 0.0l1-sec time steps in analysis

u2 = nodeDisp (2, 2)
print ("uz =", u2)

if abs(u2+0.07441860465116277579) < le-12:
print ("Passed!")

else:
print ("Failed!")

wipe ()

1.12.2 Reinforced Concrete Frame Earthquake Analysis

1. The source code is shown below, which can be downloaded here.
2. The file for gravity analysis is also needed here.

3. The ReadRecord is a useful python function for parsing the PEER strong motion data base files and returning
the dt, nPt s and creating a file containing just data points. The function is kept in a seperate file here and is
imported in the example.

4. The ground motion data file here must be put in the same folder.
5. Change the line 9 below to set the right path where the OpenSeesPy library located.

6. Run the source code in your favorate Python program and should see Passed! in the results and a plotting of
displacement for node 3

1.12. Earthquake Examples 223

20

21

22

23

24

25

OpenSeesPy Documentation, Release 1.0.0b1

T 2]
1]
Q
=
e
— 14 il
o
4
=
Q
E
Q
8 0
o
g
)
5
=
S
|-
o
T

_2 .

T T T T T
0 5 10 15 20
Time (s)

25

print (" == == ===")
print ("Start RCFrameEarthquake Example")

Units: kips, 1in, sec
#
Written: Minjie

import sys
sys.path.append('/scratch/opensees/SRC/interpreter')
from opensees import =x

import ReadRecord
import numpy as np
import matplotlib.pyplot as plt

Do operations of Example3.1 by sourcing in the tcl file

exec (open ('RCFrameGravity.py') .read())
print ("Gravity Analysis Completed")

Set the gravity loads to be constant & reset the time in the domain

(continues on next page)

224

Chapter 1. Author

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

7

78

79

80

81

82

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

loadConst ('-time', 0.0)

Define nodal mass in terms of axial load on columns
= 386.4
m = P/g

Q

mass (3, m, m, 0.0)
mass (4, m, m, 0.0)

Set some parameters
record = 'elCentro'

Permform the conversion from SMD record to OpenSees record
dt, nPts = ReadRecord.ReadRecord(record+'.at2', record+'.dat')

Set time series to be passed to uniform excitation
timeSeries('Path', 2, '-filePath', record+'.dat', '-dt', dt, '—-factor', g)

Create UniformExcitation load pattern
tag dir
pattern('UniformExcitation', 2, 1, '—-accel', 2)

set the rayleigh damping factors for nodes & elements
rayleigh(0.0, 0.0, 0.0, 0.000625)

Delete the old analysis and all it's component objects
wipeAnalysis ()

Create the system of equation, a banded general storage scheme
system('BandGeneral')

Create the constraint handler, a plain handler as homogeneous boundary
constraints('Plain')

Create the convergence test, the norm of the residual with a tolerance of
le-12 and a max number of iterations of 10
test ('NormDispIncr', 1.0e-12, 10)

Create the solution algorithm, a Newton-Raphson algorithm
algorithm('Newton")

Create the DOF numberer, the reverse Cuthill-McKee algorithm
numberer ('RCM")

Create the integration scheme, the Newmark with alpha =0.5 and beta =.25
integrator ('Newmark', 0.5, 0.25)

Create the analysis object
analysis('Transient')

Perform an eigenvalue analysis
numEigen = 2
eigenValues = eigen (numEigen)

(continues on next page)

1.12. Earthquake Examples 225

83

85

86

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

print ("eigen values at start of transient:",eigenValues)

set some variables
tFinal = nPtsxdt
tCurrent = getTime ()

ok = 0
time = [tCurrent]
u3 = [0.0]

Perform the transient analysis
while ok == 0 and tCurrent < tFinal:

ok = analyze(l, .01)

1if the analysis fails try initial tangent iteration

if ok != 0:
print ("regular newton failed .. lets try an initail stiffness for this step")
test ("NormDispIncr', 1.0e-12, 100, 0)
algorithm('ModifiedNewton', '—initial')
ok =analyze(1, .01)
if ok == 0:
print ("that worked .. back to regular newton")

test ('NormDispIncr', 1.0e-12, 10)
algorithm('Newton')

tCurrent = getTime ()

time.append (tCurrent)
u3.append (nodeDisp (3,1))

Perform an eigenvalue analysis
eigenValues = eigen (numEigen)
print ("eigen values at end of transient:",eigenValues)

results = open('results.out','at")

if ok == 0:
results.write ('PASSED : RCFrameEarthquake.py\n');
print ("Passed!")

else:
results.write ('FAILED : RCFrameEarthquake.py\n');
print ("Failed!")

results.close ()

plt.plot (time, u3)

plt.ylabel ('Horizontal Displacement of node 3 (in)"'")
plt.xlabel ('Time (s) ")

plt.show ()

—

print (" == == ===")

226 Chapter 1. Author

OpenSeesPy Documentation, Release 1.0.0b1

1.12.3 Example name spaced nonlinear SDOF

1. The source code is developed by Maxim Millen from University of Porto.

The source code is shown below, which can be downloaded here.

Also download the constants file here, and the ground motion file
Change the line 7 below to set the right path where the OpenSeesPy library located.

. Make sure the numpy, matplotlib and eqsig packages are installed in your Python distribution.

o v R w W

. Run the source code in your favorite Python program and should see

0.05 - - 11
| | I 1 N
i % rd "Fn'l r':'l;iun\f A AT
0.00 - '
i { T .
L [—— Eqsig
—0.05 - |'. 1 ——- Opensees fy=1.5N
——- Opensees fy=150N
T T T T T
0 10 20 30 40
— Eqgsig
2 ——=- Opensees fy=1.5e+02N
D -
_2 -

import egsig

from egsig import duhamels
import matplotlib.pyplot as plt
import numpy as np

import sys
sys.path.append('/scratch/opensees/SRC/interpreter')

import opensees as op # change this to the path where opensees python is stored
import opensees_constants as opc

def get_inelastic_response (mass, k_spring, f_yield, motion, dt, xi=0.05, r_post=0.0):

(continues on next page)

1.12. Earthquake Examples 227

https://github.com/millen1m
http://www.numpy.org/
https://matplotlib.org/
https://pypi.org/project/eqsig/

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

mon

Run seismic analysis of a nonlinear SDOF

:param mass: SDOF mass

:param k_spring: spring stiffness

:param f_yield: yield strength

:param motion: 1list, acceleration values

:param dt: float, time step of acceleration values

:param xi: damping ratio
:param r_post: post-yield stiffness

:return:
mmn

op.wipe ()

op.model ('basic', '-ndm', 2, '-ndf', 3) # 2 dimensions,

Establish nodes
bot_node = 1
top_node = 2

op.node (bot_node, 0., 0.)
op.node (top_node, 0., O

Fix bottom node

op.fix (top_node, opc.FREE, opc.FIXED, opc.FIXED)
op.fix (bot_node, opc.FIXED, opc.FIXED, opc.FIXED)

Set out—-of-plane DOFs to be slaved
op.equalDOF (1, 2, *[2, 31)

nodal mass (weight / g):
op.mass (top_node, mass, 0., 0.)

Define material

bilinear_mat_tag = 1
mat_type = "SteelOl"
mat_props = [f_yield, k_spring, r_post]

op.uniaxialMaterial (mat_type, bilinear_mat_tag,

Assign zero length element
beam_tag = 1

op.element ('zeroLength', beam_tag, bot_node, top_node,

—"-dir", 1, '-doRayleigh', 1)

Define the dynamic analysis
load_tag_dynamic = 1
pattern_tag_dynamic = 1

*mat_props)

values = list (-1 * motion) # should be negative
dt, '-values', #*values)

op.timeSeries ('Path', load_tag_dynamic, '-dt',

op.pattern('UniformExcitation', pattern_tag_dynamic, opc.X,

—dynamic)

set damping based on first eigen mode

angular_freq = op.eigen('-fullGenLapack', 1) %% 0.5

alpha_m = 0.0

beta_k = 2 +« xi / angular_freqg
beta_k_comm = 0.0

beta_k_init = 0.0

3 dof per node

"-mat", bilinear_mat_tag,

'-accel', load_tag_

(continues on next page)

228

Chapter 1. Author

69

70

71

2

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

op.rayleigh(alpha_m,
Run the dynamic analysis
op.wipeAnalysis ()
op.algorithm('Newton'")
op.system('SparseGeneral')

op.numberer ('RCM")
op.constraints ('Transformation')

op.integrator ('Newmark', 0.5, 0.25)
op.analysis('Transient')
tol = 1.0e-10
iterations = 10
op.test ('EnergyIncr', tol, iterations,
analysis_time = (len(values) — 1) = dt
analysis_dt = 0.001
outputs = {

"time": [1,

"rel_disp": [1],

"rel_accel": [],

"rel_vel": [],

"force": []

while op.getTime () < analysis_time:
curr_time = op.getTime ()
op.analyze(l, analysis_dt)

beta_k, beta_k_init,

beta_k_comm)

0, 2)

outputs["time"] .append(curr_time)

outputs["rel _disp"].append(op.nodeDisp (top_node, 1))

outputs["rel _vel"].append(op.nodeVel (top_node, 1))

outputs["rel_ accel"].append (op.nodeAccel (top_node, 1))

op.reactions ()

outputs["force"].append (-op.nodeReaction (bot_node, 1)) # Negative since diff

—node
op.wipe ()
for item in outputs:
outputs[item] =

return outputs

def show_single_comparison() :

mon

Create a plot of an elastic analysis,

:return:

mmn

record_filename =
motion_step = 0.01
np.loadtxt (record_filename)
acc_signal = egsig.AccSignal (rec,
period = 1.0

0.05

rec =

xi =

np.array (outputs[item])

nonlinear analysis and closed form elastic

'test_motion_dtOpOl.txt'

motion_step)

(continues on next page)

1.12. Earthquake Examples

229

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

143

144

145

146

147

148

149

150

151

153

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

mass = 1.0
f_yield = 1.5 # Reduce this to make it nonlinear
r_post = 0.0

periods = np.array([period])
resp_u, resp_v, resp_a = duhamels.response_series (motion=rec, dt=motion_step,
—periods=periods, xi=xi)

[

k_spring = 4 % np.pi ** 2 * mass / period *x 2

outputs = get_inelastic_response (mass, k_spring, f_yield, rec, motion_step, xi=xi,
« r_post=r_post)

outputs_elastic = get_inelastic_response (mass, k_spring, f_yield % 100, rec,_
—motion_step, xi=xi, r_post=r_post)

ux_opensees = outputs["rel disp"]

ux_opensees_elastic = outputs_elastic["rel disp"]

bf, sps = plt.subplots (nrows=2)
sps[0] .plot (acc_signal.time, resp_ul[0], label="Egsig")

sps[0] .plot (outputs(["time"], ux_opensees, label="Opensees fy= N" % f_yield, 1s=
N Yliiﬂ)

sps[0] .plot (outputs["time"], ux_opensees_elastic, label="Opensees fy= N" & (f_
—yield = 100), 1ls="--")

sps[l].plot (acc_signal.time, resp_al[0], label="Egsig") # Elastic solution

time = acc_signal.time

acc_opensees_elastic = np.interp(time, outputs_elastic["time"], outputs_elastic|
—~"rel_accel"]) - rec

print ("diff", sum(acc_opensees_elastic - resp_al0]))
sps[l].plot (time, acc_opensees_elastic, label="Opensees fy= N" & (f_yield =
—~100), 1ls="--")

sps[0].legend()
sps[l].legend()
plt.show ()

if name == '_ main

show_single_comparison ()

1.13 Tsunami Examples

1.13.1 Dambreak Analysis

1. The source code is shown below, which can be downloaded here.
Change the line 2 below to set the right path where the OpenSeesPy library located.
The folder dambreak/ must exist before running the script.

Run the source code in your favorate Python program.

A I

The ParaView is needed to view the results. To view the displaced shape of fluid, use the “Warp By Vector”
filter with scale factor = 1.0.

import sys
sys.path.append('/path/to/OpenSeesPy')
from opensees import =x

(continues on next page)

230 Chapter 1. Author

https://www.paraview.org/

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

53

54

56

57

59

60

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

import numpy as np
import matplotlib.pyplot as plt

remove existing model
wipe ()

set modelbuilder

model ('basic', '-ndm', 2, '-ndf',
geometric

L = 0.1406

H = L*2
H2 = 0.3

h = 0.005
alpha = 1.2
tw = 3xh

material
rho = 1000.0
0.0001
0.0
-9.81
0.012
-1.0

mu =
bl =
b2 =
thk =
kappa =

time steps
dtmax = le-3
dtmin = le-6
totaltime = 1.0

filename
filename = 'dambreak'
recorder

recorder ('PVD', filename, 'disp',
nodes
node (1,
node (2,
node
node
node
node
node
node
node
node
node

.0, 0.0)
, 0.0)

¢, H)

.0, H)
H2)
0.0)
H2)

’

O BH B o

3

4/

5, 0.0,
6, 4L,
7, 4xL,
8, —tw, H2)
9, —-tw, —tw)
10, 4+L+tw,
11, 4*L+tw,

(
(
(
(
(
(
(
(
(—tw)
(H2)
fluid mesh

fluid = 4

ndf = 2

2)

Tvellt,

'pressure')

(continues on next page)

1.13. Tsunami Examples

231

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

id = -1

mesh('line', 1, 9, 4,5,8
mesh('line', 2, 3, 2,1,4, id, ndf, h)
mesh('line', 3, 3, 2,3,4, id, ndf, h)

I4

,9,10,11,7,6,2, id, ndf, h)

eleArgs = ['PFEMElementBubble', rho,mu,bl,b2,thk, kappal

mesh('tri', fluid, 2, 2,3, id, ndf, h, *eleArgs)

wall mesh

wall = 5

id =1

mesh('tri', wall, 2, 1,2, id, ndf, h)

for nd in getNodeTags ('-mesh', wall):
fix(nd, 1,1)

save the original modal
record ()

create constraint object
constraints('Plain')

create numberer object
numberer ('Plain')

create convergence test object
test ('PFEM', le-5, le-5, le-5, le-5, 1le-15, le-15,

create algorithm object
algorithm('Newton')

create integrator object
integrator ('PFEM'")

create SOE object
system ('PFEM")

create analysis object
analysis('PFEM', dtmax, dtmin, b2)

analysis
while getTime () < totaltime:

analysis
if analyze() < O:

break

remesh (alpha)

100,

1.13.2 Dambreak with Elastic Obstacle Analysis

1. The source code is shown below, which can be downloaded here.

232

Chapter 1. Author

20

21

22

23

24

25

26

27

28

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

OpenSeesPy Documentation, Release 1.0.0b1

A

Run the source code in your favorate Python program.

Change the line 2 below to set the right path where the OpenSeesPy library located.

The folder obstacle/ must exist before running the script.

The ParaView is needed to view the results. To view the displaced shape of fluid, use the “Warp By Vector”
filter with scale factor = 1.0.

import sys

sys.path.append('/path/to/OpenSeesPy')

from opensees import x

import numpy as np

import matplotlib.pyplot as plt

remove existing model
wipe ()

set modelbuilder

model ('basic', '-ndm', 2,
geometric

L = 0.146

H = 2+L

H2 = 0.3

b = 0.012

h = 0.005

alpha = 1.2
Hb = 20.0xb/3.0
tw = 3xh

material
rho = 1000.0
mu = 0.0001

bl = 0.0

b2 = -9.81
thk = 0.012
kappa = -1.0

#kappa = 2.15e9

rhos = 2500.0

A thk+thk

E = leb

Iz = thk*thk+thk+thk/12.0
bmass = AxHbxrhos

analysis
dtmax = le-3
dtmin = le-6
totaltime = 1.0

filename = 'obstacle'

'-ndf',

3)

(continues on next page)

1.13. Tsunami Examples

233

https://www.paraview.org/

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

68

69

70

71

72

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

recorder
recorder ('PVD', filename, 'disp', 'vel', 'pressure')

nodes
node (1, 0.0, 0.0)
node (2, L, 0.0)

(
node(3, L, H, '"-ndf', 2)
node (4, 0.0, H)
node (5, 0.0, H2)
node (6, 4+L, 0.0)
node (7, 4xL, H2)
node (8, —-tw, H2)
node (9, —-tw, —tw)
node (10, 4+xL+tw, —tw)
node (11, 4+L+tw, H2)
node (12, 2xL, 0.0)

(

node (13, 2+L, Hb)

transformation

transfTag = 1

geomTransf ('Corotational', transfTag)

section
secTag = 1
section('Elastic', secTag, E, A, Iz)

beam integration

inteTag = 1

numpts = 2

beamIntegration('Legendre', inteTag, secTag, numpts)

beam mesh
beam = 6

id =1

ndf = 3

mesh('line', beam, 2, 12, 13, id, ndf, h, 'dispBeamColumn',

fluid mesh

fluid = 4
ndf = 2
id = -1

mesh('line', 1, 10, 4,5,8,9,10,11,7,6,12,2, id, ndf, h)
mesh('line', 2, 3, 2,1,4, id, ndf, h)
mesh('line', 3, 3, 2,3,4, id, ndf, h)

eleArgs = ['PFEMElementBubble', rho,mu,bl,b2,thk, kappal
mesh('tri', fluid, 2, 2,3, id, ndf, h, xeleArgs)

wall mesh

wall = 5

id =1

mesh('tri', wall, 2, 1,2, id, ndf, h)

for nd in getNodeTags ('-mesh', wall):
fix(nd, 1,1,1)

save the original modal

transfTag,

inteTagqg)

(continues on next page)

234

Chapter 1. Author

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

127

128

129

130

131

132

133

134

135

136

137

138

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

record ()

create constraint object
constraints('Plain')

create numberer object
numberer ('Plain')

create convergence test object
test ('PFEM', le-5, le-5, le-5, le-5, le-15, le-15,

create algorithm object
algorithm ('Newton')

create integrator object
integrator ('PFEM")

create SOE object
system ('PFEM")

create analysis object
analysis ('PFEM', dtmax, dtmin, b2)

analysis
while getTime () < totaltime:

analysis
if analyze() < 0O:

break

remesh (alpha)

100,

1.14 Other Examples

1.14.1 Restrained beam under thermal expansion

1. The original model can be found here.

A

Run the source code in your favorate Python program and should see

The Pypton source code is shown below, which can be downloaded here.

Change the line 2 below to set the right path where the OpenSeesPy library located.

Make sure the numpy and matplotlib packages are installed in your Python distribution.

1.14. Other Examples

235

https://www.wiki.ed.ac.uk/display/opensees/Restrained+beam+under+thermal+expansion
http://www.numpy.org/
https://matplotlib.org/

20

21

22

23

24

25

OpenSeesPy Documentation, Release 1.0.0b1

0.0025 4

0.0020 +

0.0015 4

0.0010 4

Nodal displacement

0.0005 +

0.0000 +

T T T
0 200 400 600 800
Temperature

T
1000

import sys
sys.path.append ('/path/to/OpenSeesPy")
from opensees import =«

import numpy as np
import matplotlib.pyplot as plt

define model
model ('basic', '-ndm', 2, '-ndf', 3)

#define node

node (1, 0.0, 0.0)
node (2, 2.0, 0.0)
node (3, 1.0, 0.0)

#define boundary condition
fix(1l, 1, 1, 1)
fix(2, 1, 1, 1)
fix(3, 0, 1, 1)

#define an elastic material with Tag=1 and E=2ell.
matTag = 1
uniaxialMaterial ('SteelO1Thermal', 1, 2ell, 2el1l, 0.01)

#define fibred section Two fibres: fiber SyLoc $SzLoc $A SmatTag

(continues on next page)

236

Chapter 1. Author

26

27

28

29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

7

78

79

81

82

OpenSeesPy Documentation, Release 1.0.0b1

(continued from previous page)

secTag = 1
section('FiberThermal', secTaqg)
fiber (-0.025, 0.0, 0.005, matTag)
fiber(0.025, 0.0, 0.005, matTag)

#define coordinate transforamtion

#three transformation types can be chosen: Linear, PDelta, Corotational)
transfTag = 1

geomTransf ('Linear', transfTag)

beam integration

np = 3

biTag = 1

beamIntegration ('Lobatto',biTag, secTag, np)

#define beam element
element ('dispBeamColumnThermal', 1, 1, 3, transfTag, biTag)
element ('dispBeamColumnThermal', 2, 3, 2, transfTag, biTag)

define time series
tsTag = 1
timeSeries ('Linear',tsTaqg)

define load pattern

patternTag = 1

maxtemp = 1000.0

pattern('Plain', patternTag, tsTag)

eleLoad('-ele', 1, '-type', '-beamThermal', 1000.0, -0.05, 1000.0, 0.05)
#eleLoad -ele 2 -type -beamThermal 0 -0.05 0 0.05

define analysis

incrtemp = 0.01

system('BandGeneral')
constraints('Plain')

numberer ('Plain')

test ('NormDispIncr', 1.0e-3, 100, 1)
algorithm('Newton')

integrator ('LoadControl’', incrtemp)
analysis('Static!')

analysis
nstep = 100
temp = [0.0]
disp = [0.0]
for i in range (nstep):
if analyze(l) < O:
break

temp.append (getLoadFactor (patternTag) smaxtemp)
disp.append (nodeDisp(3,1))

plt.plot (temp,disp, '-0o")
plt.xlabel ('Temperature')
plt.ylabel ('Nodal displacement')
plt.grid()

plt.show ()

1.14. Other Examples 237

OpenSeesPy Documentation, Release 1.0.0b1

238 Chapter 1. Author

Index

A

algorithm() (built-in function), 165
analysis() (built-in function), 172
analyze() (built-in function), 172

B

basicDeformation() (built-in function), 173
basicForce() (built-in function), 173
basicStiffness() (built-in function), 173
beamlIntegration() (built-in function), 75
block2D() (built-in function), 74
block3D() (built-in function), 74

C

computeGradients() (built-in function), 193
constraints() (built-in function), 156
convertBinaryToText() (built-in function), 185
convertTextToBinary() (built-in function), 186

D

database() (built-in function), 186
domainChange() (built-in function), 186

E

eigen() (built-in function), 172
eleDynamicalForce() (built-in function), 173
eleForce() (built-in function), 174

eleLoad() (built-in function), 70

element() (built-in function), 8

eleNodes() (built-in function), 174
eleResponse() (built-in function), 174
equalDOF() (built-in function), 65
equalDOF_Mixed() (built-in function), 65

F

fiber() (built-in function), 145
fix() (built-in function), 63
fixX() (built-in function), 64
fixY() (built-in function), 64

fixZ() (built-in function), 64
frictionModel() (built-in function), 152

G

geomTransf() (built-in function), 154
getEleTags() (built-in function), 174
getLoadFactor() (built-in function), 174
getNodeTags() (built-in function), 175
getTime() (built-in function), 175
groundMotion() (built-in function), 72

imposedMotion() (built-in function), 72
InitialState Analysis() (built-in function), 186
integrator() (built-in function), 171

L

layer() (built-in function), 146
load() (built-in function), 69
loadConst() (built-in function), 186

M

mass() (built-in function), 73

mesh() (built-in function), 190
modalDamping() (built-in function), 187
model() (built-in function), 8

N

nDMaterial() (built-in function), 126
node() (built-in function), 63
nodeAccel() (built-in function), 175
nodeBounds() (built-in function), 175
nodeCoord() (built-in function), 175
nodeDisp() (built-in function), 175
nodeEigenvector() (built-in function), 176
nodeMass() (built-in function), 176
nodePressure() (built-in function), 176
nodeReaction() (built-in function), 176
nodeResponse() (built-in function), 176

239

OpenSeesPy Documentation, Release 1.0.0b1

nodeUnbalance() (built-in function), 177
nodeVel() (built-in function), 177
numberer() (built-in function), 157
numFact() (built-in function), 177
numlter() (built-in function), 177

P

patch() (built-in function), 145
pattern() (built-in function), 69
printA() (built-in function), 177
printB() (built-in function), 178
printGID() (built-in function), 178
printModel() (built-in function), 178

R

random Variable() (built-in function), 195
rayleigh() (built-in function), 73
reactions() (built-in function), 187
record() (built-in function), 178
recorder() (built-in function), 179
region() (built-in function), 73
remesh() (built-in function), 192
remove() (built-in function), 187

reset() (built-in function), 187

restore() (built-in function), 187
rigidDiaphragm() (built-in function), 65
rigidLink() (built-in function), 65

S

save() (built-in function), 188
section() (built-in function), 144
sectionDeformation() (built-in function), 184
sectionFlexibility() (built-in function), 184
sectionForce() (built-in function), 184
sectionLocation() (built-in function), 184
sectionStiffness() (built-in function), 184
sectionWeight() (built-in function), 185
sensitivity Algorithm() (built-in function), 194
sensLambda() (built-in function), 194
sensNodeAccel() (built-in function), 194
sensNodeDisp() (built-in function), 194
sensNodePressure() (built-in function), 195
sensNodeVel() (built-in function), 194
sensSectionForce() (built-in function), 195
setElementRayleighDampingFactors() (built-in function),
189
setNodeAccel() (built-in function), 189
setNodeCoord() (built-in function), 188
setNodeDisp() (built-in function), 188
setNodeVel() (built-in function), 188
setPrecision() (built-in function), 189
setTime() (built-in function), 188
sp() (built-in function), 70
start() (built-in function), 189

stop() (built-in function), 189
stripXML() (built-in function), 189
system() (built-in function), 158
systemSize() (built-in function), 185

T

test() (built-in function), 160
testlter() (built-in function), 185
testNorm() (built-in function), 185
timeSeries() (built-in function), 66

U

uniaxialMaterial() (built-in function), 80
updateElementDomain() (built-in function), 190

V

version() (built-in function), 185

W

wipe() (built-in function), 190
wipeAnalysis() (built-in function), 190

240

Index

	Author

