


رعایت چه نكاتى منجر به يك اتصال
 وجود دارند كه بايد براى رسيدن به جور جو

 نوشتار دو بخشى، ، به هفت مورد از اين اصول چرداخته مى شود.
اصل اول- يك اتصال جوشى خوب، قادر است همهُ بارهاى اعمال شالصمال شدا را از طريق

اتصال، ، به صورت كارآمد منتقل نمايد
 جنبه هاى ديگر آن، حقيقتاً اهميتى نخواه داشت. جوشى كه قطعات مختلف فولادى را به يكديگر متصل مىكند، بايد از نظر اندازه و جنس به گونهاى باشي بسته به كاربرد مورد نظر دارا باشد. هميشه قرار
 شده را افزايش دهند، اما هميشه اين انتظار
 طريق اتصال منتقل كند . براى انتخاب اندازه مناسب يك جوش بايد مشخص شود كه چه نيروهايى توسط اتصال اتصال منتقل مىگرٍدد. اين امر در مورد اتصالات عرضى نسبتاً ساده است، ونـ ولى در اتصالات اتهات طولى، شناسايى این مسأله چندان نيست. شكل هاى ا تا با را با جهار جوش طولى طولى در نظر بگيريد، قطعات جوش داد تصاوير مشابه همديگر هستند، ولى باريار بارهاى منتقل شده از اتصالات به طور قابل توجهى با با
 اتصال به شكل قوطى به عنوان يك آويز عـي كرده و نيروهاى كششى بهى به صورت يكنواخت در تمام مقطع توزيع شدهاند. همان مقطع در شكل 「 مىتواند به عـه عنوان ستون تحت بار فشارى قرار گيرد. مطابق AISC 360 براى اين
 موازات جوش هستند، نيازى نيست كه روى

 مى يابد، ولى جوش در امتداد طول خود بهاصورت يكنواخت بار باركذارى نشده است. يك جفت سختكننده به كار رفته در شكل ا ا، اين مشكل را اصلاح مىكند. به اين صورت، مسير انتقال بار از از قلاب بـٍ جوش، از جوش به بال، ، از بال سخت شده به سخت كنـندهـها، و ونهايتاً به جان) واضح مى باشد.
اصل سوم: يك اتصال جوشى خوب، جوش را در منطقه كمتنشتر قرار مىدهد . چحنانجه عملى و ممكن باشد، موقعيت جوشها ما بايد در نواحى كمتنش قرار بگيرد. با محقق شدن اين امر، جوشه ها كمتر در معرض شرايط بحرانى خخواهند بود. همحنينين از آنجا كه اين كار موجب
 به طور مثال، نواحى اتصال شاهتيرهاى سراسرى مىتوانواند در نقاط عطف امتداد طولى عضو قرار كيرد. براى سازهمهاى با بارِّذارى سياريكلى،
 كمتنش مى باشد، ادامه دادن ورق هاى يوششیى تا منطقه با تا تنش كمتر

مىتواند جزئيات اتصال را قابل قبول نمايد.

 انتقال بار در اتصال، اندازءٔ جوش بيشترى مورد نياز است. ولى در در
 ا تا با نفوذ كامل، يكسان است. در اين حالت مىتوانوان با توجه با به به در نظر گَرفتن ميزان بار و طول اتصال از جوش شيارى با نفوذ كامل استفاده
 بار منتقل شده از طريق جوش در طراحى لحاظ شده باشد.

 است، بجينه نيستند. بهينه نبودن يكى اتصال فقط پيامد اقتصادي به همراه ندارد بلكه وقتى يك اتصال جوشى بيش از اندازه جوش داده

 مثال فوق، استفاده از جوش كاملاً نفوذى توصيه نمىیرى انردد. اصل دوم: يك اتصال جوشى خوب داراى مسير انتقال بار
آشكار و مستقيم؟ است.

تنشهالى موجود در عضو بايد از يكى عضو به وسيلهُ جوش به عضو
 اين مسير انتقال بار، واضح و مستقيم باشد. با در شكل ها ها بار عمودى از قلاب بوسيله جوش به بال و از طريق بال به جار جان وارد مى شورد، بار وارده به جوش يكنواخت بوده و ومسير انتقال بار واضح و و مستقيم است. در مقابل در شكل \&، بار از قلاب به وسيلهُ جوش به بال انتقال



شكل 9


شكل 9 عضو نازكتر نايِيوسته بوده و اين امكان را مىدهد كه با اندازه جوش كمتر، انتقال بار محقق شود.

اصل چهارم: يک جوش خوب نبايد باعث ايجاد تمركز تنش
گَردد.
برخى جوشها و جزئيات اتصالات جوشى ممكن است باعث ايجاد




 آيين نامه AISC يِيشنهاد برداشتن پشپ

 فولادى، از آنجا كه اين سطح مشترك با تنشىهاى وارده موازى
 همحچنين، وجود پشتبند

 چنانچֶه مقطع قوطى تحت بارگذارى خمشى قرار گییرد، تنشهیای

 در اين گونه اتصالات، مىتوان قطعات پشتبند را قبل از قرار دادن



اتصالات تحت بارگذارى سيكلى، سرانجام گسيختگى اتصال با جوش
 علاوه بر تمركز تنش ايجادشده توسط ريشّ ريشٔ جوش، لبه جوش جوش نيز مىتواند باعث تمركز تنش گردد. گرچچه، سطح مشر مشكلات آن به




 متنوعى مانند تركهایاى overlap ، undercut و underbead در پنجهُ جوش متمركز مى شوند. بنا بر اين دلايل مى بايست دقت ويرّاهاى به نحوهُ طراحى و اجراى
 اطمينان از اينكه لبه و ريشه مشكل اري اري

 از آن) به صورت عمود بر مقطع مورد نظر وارد شده
 تنش در محل اين ناپیيوستگى هاى هندسى نمى شوند.

مىتوانند باعث تركخوردگى فولاد انعطافپٍير يا فلز جوش شوند.


از تشكيل چنين تنشه هايی در مقطع جوش كمكى مىكند.
اصل ششم: يك اتصال جوشى خوب، جوش را در معرض خمش قرار نمىدهد.
 نمى باشد! مسلماً ساخت تيرورق با استفاده از جوش ها هاى آى در راستاى
 طراحان را از بارگذارى كه موجب خمث



 جوش تحت بارگذارى برشى قرار گيرد.
اصل هفتم: يكى اتصال جوشى خوبى از از لبه و ريشهُ جوش محافظت مىكند.



 در بارگذارىهاى استاتيكى از حفاظت كافى برخوردار است، ولى در


