A One-Day Technology Transfer Event
The theory and practice of

PERFORMANCE-BASED DESIGN

THE FUTURE OF EARTHQUAKE ENGINEERING
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Nonlinear Viscous Damping
Nonlinear Hysteretic Damping
Error

Nonlinear Analysis & Performance Based Design
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Modal Damping

Nonlinear Viscous Damping
Nonlinear Hysteretic Damping
Error

Nonlinear Analysis & Performance Based Design
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FEaE CAPACITY DESIGN

STRONG COLUMNS & WEAK BEAMS IN FRAMES
REDUCED BEAM SECTIONS
LINK BEAMS IN ECCENTRICALLY BRACED FRAMES
BUCKLING RESISTANT BRACES AS FUSES
RUBBER-LEAD BASE ISOLATORS
HINGED BRIDGE COLUMNS
HINGES AT THE BASE LEVEL OF SHEAR WALLS
ROCKING FOUNDATIONS
OVERDESIGNED COUPLING BEAMS
OTHER SACRIFICIAL ELEMENTS
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SEE DERFORMANCE LEVELS

Higher Performance
less loss
Expected Post-Earthquake
Damage State

Operational
Backup utility services maintain
functions; very little damage.

Immediate Occupancy
The building remains safe to
occupy; any repairs are minor.

Life Safety

Structure remains stable and has
significant reserve capacity; hazardous
nonstructural damage is controlled.

Collapse Prevention
The building remains standing, but
only barely; any other damage or
loss is acceptable.
Lower Performance
more loss
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Initial
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DEFORMATION
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_—» Performance assessment :

Bending behavior is ductile.
Use hinge rotation D/C ratio.

Elastlc rotation

MDO .010 .020 .025

Hinge rotation

ASCE 41 hinge rotation capacities
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Linear Static Analysis

Linear Dynamic Analysis
(Response Spectrum or Time History Analysis)

Nonlinear Static Analysis
(Pushover Analysis)

Nonlinear Dynamic Time History Analysis
(NDI or FNA)
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% STRENGTH vs DEFORMATION

ELASTIC STRENGTH DESIGN - KEY STEPS

CHOSE DESIGN CODE AND EARTHQUAKE LOADS
DESIGN CHECK PARAMETERS STRESS/BEAM MOMENT
GET ALLOWABLE STRESSES/ULTIMATE— PHI FACTORS
CALCULATE STRESSES — LOAD FACTORS (ST RS TH)
CALCULATE STRESS RATIOS

INELASTIC DEFORMATION BASED DESIGN -- KEY STEPS

CHOSE PERFORMANCE LEVEL AND DESIGN LOADS — ASCE 41
DEMAND CAPACITY MEASURES — DRIFT/HINGE ROTATION/SHEAR
GET DEFORMATION AND FORCE CAPACITIES
CALCULATE DEFORMATION AND FORCE DEMANDS (RS OR TH)
CALCULATE D/C RATIOS — LIMIT STATES
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% STRUCTURE and MEMBERS

For a structure, F = load, D = deflection.

For a component, F depends on the component type, D is the
corresponding deformation.

The component F-D relationships must be known.
The structure F-D relationship is obtained by structural analysis.
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- FRAME COMPONENTS

For each component type we need :
Reasonably accurate nonlinear F-D relationships.
Reasonable deformation and/or strength capacities.

We must choose realistic demand-capacity measures, and it must be
feasible to calculate the demand values.

The best model is the simplest model that will do the job.
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F-D RELATIONSHIP

Force (F) _
A Ultimate

Ha?ggmng . strIength Ductile limit

First yield o Strength loss

Initially Residual strength
linear 7 Complete failure

>
\ Deformation (D)

Stiffness, strength and ductile limit may
all degrade under cyclic deformation

Hysteresis loop
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Brittle Partially Ductile Ductile
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ASCE 41 - DUCTILE AND BRITTLE

Type 1 curve Type 2 curve Type 3 curve
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“"FORCE AND DEFORMATION CONTROL

Deformation- Force-
Controlled Controlled
Component Action Action

Moment Frames
* Beams Moment (M) Shear (V)

* Columns Axial load (P), V
* Joints Vv

Shear Walls

Braced Frames
» Braces

* Beams

* Columns

» Shear Link

Connections

Diaphragms
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% BACKBONE CURVE

Hysteresis loops

from experiment. Relationship allowing

for cyclic deformation
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STRENGTH DEGRADATION

Initial relationship, for
monotonic load

Degraded relationship
after cyclic loading

).
DEFORMATION
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""ASCE 41 DEFORMATION CAPACITIES

|O capacity CP capacity (usually at
(visible damage)  or close to ductile limit)

MOMENT I I

I LS capacity (usually
A I 1T * about 75% of CP)

>
ROTATION OR CURVATURE

This can be used for components of all types.
It can be used if experimental results are available.
ASCE 41 gives capacities for many different components.

For beams and columns, ASCE 41 gives capacities only for the chord
rotation model.
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% PLASTIC HINGE MODEL

Mi (A.\ Elastigbeam /‘é) :

Plastic hinge Plastic hinge

Zero length Moment, M,

|<—>| A

M ( '.'> M, e Initially

rigid

@ o, >

Rotation, 6,

* |tis assumed that all inelastic deformation is concentrated in zero-
length plastic hinges.

e The deformation measure for D/C is hinge rotation.
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% PLASTIC ZONE MODEL

Plastic zone length

B S .

Inelastic Elastic Inelastic

The inelastic behavior occurs in finite length plastic zones.

Actual plastic zones usually change length, but models that have
variable lengths are too complex.

The deformation measure for D/C can be :
- Average curvature in plastic zone.

- Rotation over plastic zone ( = average curvature x plastic
zone length).
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“ASCE 41 CHORD ROTATION CAPACITIES

MOMENT
A .

\ 6, = plastic \

rotation

>

0y = yield ROTATION FROM CHORD
rotation

1O LS
Steel Beam ep/e)y =1 ep/e)y =6

RC Beam
Low shear Gp =0.01 Gp = 0.02
High shear 0, =0.01
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“"" COLUMN AXIAL-BENDING MODEL
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N

LOAD PATH MOMENT ROTATION

M,=ZF, (1-P/P )
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SHEAR HINGE MODEL

Node »—»l—f—’:

Elastic beam shear "hinge"

Zero-length
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" PANEL ZONE ELEMENT

/—\: Rotational
Ao spring
ngle is
L not 90°

Beam

T> depth
Rigid link l ‘ Hinge
w__/ Column width

PANEL ZONE DEFORMATION ANALYSIS MODEL

Deformation, D = spring rotation = shear strain in panel zone.
Force, F = moment in spring = moment transferred from beam to
column elements.

Also, F = (panel zone horizontal shear force) x (beam depth).
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BUCKLING-RESTRAINED BRACE

Axial Force

A

|

S/,

Axial
Deformation

The BRB element includes “isotropic” hardening.

The D-C measure is axial deformation.
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-~ BEAM/COLUMN FIBER MODEL

The cross section is represented by a number of uni-axial fibers.
The M-y relationship follows from the fiber properties, areas and locations.
Stress-strain relationships reflect the effects of confinement
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WALL FIBER MODEL
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Hinge length, L
(= gage length for

calculating strain).
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CIRCULAR FREQUENCY

Radius, R
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Mmu+ku=0

M

Ut = u, cos(at)
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RESPONSE MAXIMA
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DAMPED RESPONSE
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""" SDOF DAMPED RESPONSE

leration; JointVelocity

Joint A

| |
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Time, sec
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"RESPONSE SPECTRUM GENERATION
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7 SPECTRAL PARAMETERS
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““ THE ADRS SPECTRUM

RS Curve

1.0 Seconds
2.0 Second

ADRS Curve
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“ASCE 7 RESPONSE SPECTRUM
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PUSHOVER

Push-over

load pattern
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Linear Pushover Diagram Linear Pushover Diagram ADRS Spectrum
(In terms of force) (In terms of acceleration) (With linear pushover diagram)

A

M — e

K3| /K= K1+K2+K3
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“~ EQUIVALENT LINEARIZATION

How far to push? The Target Point!

Sa
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DEFORMATION
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“*%% DISPLACEMENT MODIFICATION

Calculating the Target Displacement

B ) 2
§=C C C S T’/(4x)

C, Relates spectral to roof displacement
C, Modifier for inelastic displacement
C, Modifier for hysteresis loop shape
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LOAD CONTROL AND DISPLACEMENT CONTROL

Usually apply

equal load —e -

increments

A

If load exceeds strength

there is no solution

|

S

DISPL.

Get unequal displacement increments
LOAD CONTROL

Load increment
A can be negative
Requires . “T
unequal load —
increments

L

| | )'
| ’ | DISPL.

Apply equal displacement increments
DISPLACEMENT CONTROL
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P-DELTA ANALYSIS
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P-DELTA DEGRADES STRENGTH

w/o P-A

A

A

with P-A

P
o

H
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P-DELTA EFFECTS ON F-D CURVES

P-A effects may reduce the drift at which the
"worst" component reaches its ductile limit.

STRUCTURE P-A effects will reduce the drift at
STRENGTH _ _.__ﬁ which the structure loses strength.

‘ | \ . 1he "over-ductility" is reduced,

and is more uncertain.
>
DRIFT
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NON LINEAR FRAME AND SHEAR WALL HINGES
BASE ISOLATORS (RUBBER & FRICTION)

STRUCTURAL DAMPERS
STRUCTURAL UPLIFT

STRUCTURAL POUNDING
BUCKLING RESTRAINED BRACES
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FNA KEY POINT

The Ritz modes generated by the
nonlinear deformation loads are used
to modify the basic structural modes

whenever the nonlinear elements go
nonlinear.
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ARTIFICIAL EARTHQUAKES

CREATING HISTORIES TO MATCH A SPECTRUM

FREQUENCY CONTENTS OF EARTHQUAKES

FOURIER TRANSFORMS
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ARTIFICIAL EARTHQUAKES

m Frequency Content of Reference Time History

- e— —

12.0 -

10.5 -

9.0 -

75 =

Amplitude

6.0 -

45 -

3.0 -

Frequency Content of Reference Time History Frequency Content of Matched Time History
15.0 — 30.0 -
135 =

Amplitude

1 1 I I 1 1 I I

25 50 75 100 125 150 175 200 225 250 00 25 50 75 100 125 150 175 200
Frequency, cyc/sec Frequency, cyc/sec
Max: (2.160645, 14.141919); Min: (23.718262, 0.002226) Max: (0.842285, 27.591131); Min: (0. 0)

225 250
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“APPROXIMATING BENDING BEHAVIOR

Shear force
and deformation

|
Bending moment ﬁ\
and curvature \I |

|

=
For finite element model, | |
curvature is based on moment «——

at element midpoint.

This is for a coupling beam. A slender pier is similar.
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" “ACCURACY OF MESH REFINEMENT

Elastic beam, rectangular section.

Shear modulus, G = 0.4E.
Assume shear area = actual area.

Ratio of finite element deflection
to exact deflection for different
d/L ratios and numbers of elements.
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"""STRAIN CONCENTRATION STUDY

Gravity load, followed by :
(1) push-over load with linear variation over height,
¢ (2) dynamic earthquake load.

Use hinge length = story height.

Consider different numbers of
elements over the hinge length.

Calculate strain at extreme fiber :
(a) In lowest element.

(b) Over story height,
using a strain gage.

Calculate rotation over story

. - . height, using a rotation gage.

1 2 3
Number of elements over hinge length

Compare calculated strains and rotations for the 3 cases.
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“““STRAIN CONCENTRATION STUDY

Roof Strain in bottom | Strain over story Rotation over
drift element height story height

2.32% 2.39% 2.39% 1.99%
RCYA 3.66% 2.36% 1.97%
2.32% 4.17% 2.35% 1.96%

The strain over the story height is insensitive to the number of elements.
Also, the rotation over the story height is insensitive to the number of elements.
Therefore these are good choices for D/C measures.
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" PIER AND SPANDREL FIBER MODELS

Vertical axial and bending

=£
I | S
'

Horizontal axial and bending

Vertical and horizontal fiber models
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RAYLEIGH DAMPING

The aM dampers connect the masses to the ground. They exert
external damping forces. Units of o are 1/T.

The BK dampers act in parallel with the elements. They exert internal
damping forces. Units of B are T.

The damping matrix is C = aM + BK.
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DAMPING RATIO
A oM + BK
Damping can be essentially
constant for a range of periods

>
T, PERIOD

For linear analysis, the coefficients a and B can be chosen to give essentially
constant damping over a range of mode periods, as shown.

A possible method is as follows :

Choose Ty = 0.9 times the first mode period.

Choose T, = 0.2 times the first mode period.

Calculate a and 3 to give 5% damping at these two values.
The damping ratio is essentially constant in the first few modes.
The damping ratio is higher for the higher modes.
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RAYLEIGH DAMPING

|\/|Ut+ Cu+Ku =

MU, + (aM+BK)U +Ku =

oo C. K _
U+>=U+—-U =20
+M +M

U+2t0l+0’u=0 . 26Mo=C

C
K
2|\/|\/M

C

_ C
g_ZMco B
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RAYLEIGH DAMPING

Higher Modes (high ®) =
Lower Modes (low ) = &

To get C from a & [ for any a)=\/ﬁ s T=21
®

To get a & f from two values of C;l& C;Z

Solve for a &
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“DAMPING COEFFICIENT FROM HYSTERESIS
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“DAMPING COEFFICIENT FROM HYSTERESIS

U+2&wu+ w2u = -lig
u=dsin wt
u=d w coswt
f = (28w) (dw)
Area = T fd

= 2mEw?d?
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The American Concrete Insitute Awards CSI:

The Charles S. Whitney Medal

“For 30 years of development of world-class computer
applications for analysis and design of structures that

have changed and modernized structural engineering _
practice to a level never envisioned just a few:
decades ago.”

- American Concrete Institute Board of Directors, Spring 2011
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